
CS886: Multi-Agent Systems

Final Project

Adjustable Autonomy for Autonomic

Computing

Michael Jarrett (99318764)

July 30, 2004



Abstract

In the area of information technology infrastructures, human management is quickly becom-

ing the largest cost of a system. Autonomic computing proposes to resolve this by creating

systems that are able to configure, optimize, heal, and protect themselves.

It is unlikely that systems will ever be able to run entirely without human administrators.

Adjustable autonomy will be required to allow administrators to observe and direct the

system, from the highest-level goals to individual settings. Without an effective method

of taking and later returning control of arbitrary components of the system, autonomic

computing risks adding complexity to the system rather than reducing it.

This project describes an architecture for an autonomic computing management infrastruc-

ture in terms of a co-operative multi-agent system. An implementation technology, Cougaar,

is described. Design decisions to add adjustable autonomy appropriate for both human-agent

and agent-agent interactions are discussed.

1 Introduction

Moore’s Law describes the trend that computers tend to double in power every eighteen

months. This has allowed for computing systems to become far more powerful and intelligent

than the early pioneers of computing could have ever imagined, and find their way into

practically every aspect of our daily lives. However, this has not come without cost: as

computers are deployed for greater number and complexity of task, the cost to administrate

and maintain these systems also increase.

It has been recognized in the realm of Information Technology (IT) systems that without a

change in the way such systems are managed, that the constant increase in administrative

costs is unsustainable. One solution to this, proposed by IBM in 2001, is the concept of

autonomic computing [1]. An autonomic computing system, analogous to the human nervous

system, maintains the standard operation of the system. The human administrator becomes

an overseer, only required for circumstances beyond the ability of the system to handle, and

to specify the high-level goals of the system.

While the system would perform most maintenance on its own, the administrator still re-

1



quires the ability to specify the system at a high level, and in some cases, even take direct

control of certain components. Even with the system in control, the administrator must

still have a method of observing the system behaviour. This sort of behaviour is a textbook

example of an artificial intelligence concept known as adjustable autonomy.

This project describes the adjustable autonomy requirements in an agent-based autonomic

computing environment, and outlines some basic design for human-agent and agent-agent

adjustable autonomy. Section 2 discusses related work, including an outline of autonomic

computing and adjustable autonomy. Section 3 describes a potential design for an agent-

based autonomic computing infrastructure. Section 4 discusses the requirements of, then

adds the concept of adjustable autonomy to this design. Finally, section 5 presents conclu-

sions and suggests future research initiatives.

2 Related Work

2.1 Autonomic Computing

The term autonomic computing was first coined in 2001 in a ‘manifesto’[1] published by

IBM. The author described the state of IT administration as ‘unsustainable’, and proposed

a solution that would function similar to the human autonomic nervous system. Much

as breathing and one’s heartbeat is automatic in a human, day-to-day optimization and

maintenance would be automatic in an autonomic computing system.

The biological analogy served as an effective staring point, but a more concrete definition was

required. The concept was broken down by several players into four key areas of functionality

a system would have to provide to be considered ‘autonomic’.

• Self-Configuring: The system must be able to deploy and configure itself, and adjust

this configuration when needed.

• Self-Optimizing: The system tunes itself to perform its allocated tasks more effectively.

• Self-Healing: The system can recover from most software and hardware failures with

minimal disruption to normal operation.

2



• Self-Protecting: The system can detect and thwart malicious attempts at compromise

by hackers, viruses, and other active threats to the system’s operation.

In the years since, many large players from both the academic and corporate world have

worked towards autonomic computing. IBM has spearheaded the research under the au-

tonomic computing [2] name. HP has worked towards products under the brand adaptive

management [3]. Microsoft has slated several technologies to be developed for its dynamic

systems initiative[4], in conjunction with their Longhorn operating system. Sun Microsys-

tems has introduced some autonomic concepts into its N1 initiative, but has had trouble

maintaining a consistent vision.

From the academic side, several project have been undertaken at universities. The most

notable are several DARPA-funded projects under the Dynamic Assembly of Systems for

Adaptability Dependability and Assurance[5] project. One particularly interesting project

in this area is the Kinesthetics Extreme[6] project, which, like this project, used agent

technology and planning to add autonomic capabilities to legacy systems.

2.2 Adjustable Autonomy

Autonomy in the context of multi-agent systems is a measure of an agent’s ability and

willingness to take action to accomplish its goals. This autonomy can be in relation to three

key areas: a user with which it interacts, the environment in which it takes action, and other

agents in the system.[7]

In most systems, agent autonomy is a design consideration for each agent, and remains fixed

for the lifetime of the agent. Adjustable autonomy (AA) designs allow an agent’s autonomy

to change at runtime in response to external commands, or even autonomously.

Most of the research in adjustable autonomy focuses on human-agent interaction. The agent

responsible for communicating with a user will either wait for input from the user, or take

action without consulting the user. The adjustment of this autonomy level can happen based

on many factors, including decisions based on a model of the user, and the relative cost of

delay versus an incorrect decision. A paper on the Electric Elves project[8] looks at the issues

and challenges of adjustable autonomy in a multi-agent system where agents must represent

a human as well as interacting with each other. Three AA challenges are mentioned: the

3



coordination challenge, the team decision challenge, and the safe learning challenge.

Autonomy can be adjusted not only between a human and an agent, but also for the division

of responsibilities between agents. A paper by Scerri and Reid[9] describes a design for

adding AA to multi-agent systems by adding an autonomy manager to oversee and transfer

autonomy between the agents under its supervision. Several of the guidelines for such a

system, and more importantly, critical guidelines for agent design to support such a system

are discussed.

2.3 Adjustable Autonomy in IT and AC Systems

Many sources have recognized the need for adjustable autonomy in system management,

though rarely referring to it explicitly by name.

Boeing issued a whitepaper[10] describing the need for adjustable autonomy multi-agent

systems in information systems, and poses several questions that they believe need to be

answered to create such systems. IBM has observed that much of their work in autonomic

computing will critically depend not just on system autonomy, but more importantly on the

human interfaces and interactions with such a system[11]. Industry observers have noted[12]

that even with the autonomic push, that automation will always eventually fail, and that

once a larger portion of systems are automated, it will be even more critical for users to be

able to control the system.

It was observed that even the biological analogy of autonomic systems could produce unin-

tended side effects in humans, for example, how the“fight-or-flight” response to threats could

cause undue stress in modern society. Much in the same way, user interfaces for autonomic

systems must avoid such unintended side effects. IBM noted that many questions need to

be answered, including “How do users understand what autonomic systems are trying to

do? How should systems portray themselves to users? How can we design the experience of

autonomic computing to amplify user capabilities?” [13].

The use of adjustable autonomy systems thus far in information technology infrastructure

management has been uncommon thus far, because it is only with the advent of autonomic

computing that such systems had a significant level of autonomy to delegate. Many major

software vendors provide IT management software, but very few are equipped to automati-

4



cally take action, or only do so in a limited, hard-coded way. A recent article[12] observes

that past automation attempts have largely failed and that only with the latest initiative

into autonomic computing are we starting to see small successes.

3 Agent-Based Autonomic Computing System

While many have worked on enabling technologies, a central issue in autonomic comput-

ing has been creating the architecture for autonomic management. An approach frequently

cited by IBM is that of composing autonomic systems from sets of interrelated autonomic

elements [14]. Each of these elements consists of a feedback loop between the system being

managed (the managed element) and the autonomic management logic (the autonomic man-

ager) as shown in figure 1. The autonomic managers communicate with each other to work

towards system-level goals.

Figure 1: Autonomic Element

Proposals mentioning implementation technologies focus on the use of grid services, normally

based on the Open Grid Services Architecture[15]. These systems are, at their core, simply

very featureful remote procedure call libraries. An extension of the idea of grid services

leads naturally to the idea of multi-agent systems, where autonomic managers are in fact

intelligent agents communicating with each other.

5



A cooperative multi-agent system is very effective in such a situation for several reasons:

• Goal or utility driven.

• Can be given autonomy to accomplish their goals; generally can be proactive and/or

reactive.

• Body of research behind cooperative negotiation and distributed planning.

• Availability of featureful multi-agent toolkits.

• Modularity and ease of upgrade.

• Can easily be used in distributed systems.

3.1 Architecture

My architecture[16], summarized in figure 2 is based on an early outline proposed[17] by

IBM. The system is broken into three layers, each consisting of sets of autonomic managers.

Each autonomic manager is an agent in a multi-agent system.

The lowest layer is called the resource element layer. Each element at this level is responsible

for managing one hardware or software resource. The middle layer is called the composite

layer, and has elements responsible for maintaining groups of similar resource elements. This

layer does not handle individual management of resources, but addresses issues important to

the resource as a whole, for example load distribution. At the top is the system layer, which

is responsible for configuring and maintaining working systems. Each element operates a

full system by requesting resources from the pools, and instructing each to configure itself

appropriately. A system may represent either a distinct task allocated to the computing

environment (eg. an e-commerce website), or a global system aspect (eg. security).

Human administrators interact with the system level by specifying the goals the system

must accomplish. The system agents are responsible for recruiting lower levels of agents to

perform these tasks. There is a strict hierarchy of precedence, where higher level agents

ultimately have authority over lower level agents.

6



Figure 2: Layered Architecture for Autonomic Computing Management

3.2 Implementation Technology

We will construct such a system, using the Cougaar[18] multi-agent toolkit. While the

architecture itself is not dependent on the use of Cougaar, the adjustable autonomy design

enhancements assume a system with many of the features of Cougaar.

In Cougaar, an agent consists of a set of plugins written in Java, communicating through a

shared blackboard. Through built-in communication methods, objects on an agent’s black-

board may be shared with other agents in the system.

Agents may each offer a web interface through use of a Java servlet engine built into each

agent. All these servlet engines are linked, allowing for communication to any agent in the

system to be initiated by contacting the servlet engine of any agent.

7



While several ‘domains’ are provided by Cougaar, the main form of reasoning is that of

planning. Each plugin manipulates the blackboard by publishing tasks, subtasks, assets,

and the mappings between these. By modelling agents as assets, this planning system can

even extend across agents in an efficient distributed manner. Tasks can have utility functions

and constraints associated with them.

Additional libraries provide blackboard objects for sensor conditions, and the abilities to

manipulate and aggregate these conditions. These conditions ultimately end up on the

blackboards of each agent, and can be an effective way of representing an object’s current

state.

4 Adjustable Autonomy in Agents

It is clear in the design in section 3 that agents are not fully autonomous. Agents must give

up some autonomy to form hierarchies, as well as to respond to direction from higher layers.

These agents at higher layers must also have the ability to inspect the state of the agents

below them to know when they themselves must take action. Central to the design of this

system must be the aspect of adjustable autonomy.

4.1 Requirements

Adjustable autonomy, in the context of this autonomic computing system, requires several

requirements to be solved individually in agents. The capabilities of the agents in the system

determine how much autonomy is even possible, so care must be taken to meet the following

requirements in the agents.

4.1.1 Observability

Each agent must have both critical portions of its state and the entirety of its current plan

accessible in a form that can be interpreted by other agents. A change in autonomy can

only be decided upon in an informed manner based on what information the agent presents,

so by improving the quantity and quality of information presented, autonomy changes are

8



made more effective.

An extension of this is that agents must also make this information available in a form

usable by humans. At the very minimum, a generic tool could format the data presented for

other agents for display, but much more effective would be for the agent itself to present the

information in a method suitable for the information domain.

The ability to view the reasoning process behind an agent’s actions has been recognized[13]

as a critical aspect of autonomic computing. If the agent cannot justify to an administrator

the actions it has taken, the system will appear irrational to that administrator. This

severely limits the ability of humans to trust the operation of the system, and could lead to

administrators taking autonomy inappropriately.

4.1.2 Remote-Initiated Autonomy Transfer

Humans and other agents must have a way to take autonomy from other agents. This can

encompass a variety of actions, such as forcing a particular mode of operation, barring certain

actions or settings, or an order to immediately perform a particular action.

These changes must be accepted by the agent losing its autonomy without affecting the

autonomy it keeps. The agent is free to (and probably should) perform its own adjustments

in areas where it has kept autonomy to best suit the new constraints on its actions.

Autonomy that is taken must be able to be restored, essentially undoing the change in

autonomy. An agent should seamlessly accept and utilize the autonomy returned to it.

4.1.3 Locally-Initiated Autonomy Transfer

An agent should have the ability to request more autonomy than it currently has. In a

case where autonomy has been taken from it, this would look like a request to the agent

taking autonomy (or a higher authority) to have some of the imposed constraints relaxed. In

other cases, it may be a hardwired safety feature to always seek authorization for dangerous

actions.

There may be cases where a local agent decides to give up its own autonomy. In many cases,

it could simply be to finalize a period of greater autonomy where previously requested.

9



However, one could imagine a situation where an agent explicitly communicates to its peers

that it has encountered a situation outside its own ability to handle, and is requesting

intervention; essentially, an agent ’cry for help’.

One of the key issues in a locally-initiated autonomy transfer is where to request autonomy.

An agent must have enough knowledge to understand which agents actually have the au-

thority to delegate it autonomy, while not overburdening one central authority which may

not have the localized knowledge to make such decisions (namely, a human administrator).

Requesting autonomy from human administrators is problematic since it requires external

communication. It is likely that one or more separate agents will have to be entrusted with

the knowledge to reach administrators through a variety of real-world means (pagers, emails,

etc). In this case, the request can behave like a request for autonomy from another agent.

4.1.4 Persistence and Precedence

Shifts in autonomy need to be recorded, and enforced in future actions by the agent. A fully

autonomous agent would immediately react to a change that deviates it from its current plan

to attempt to correct the change; this sort of behaviour must be prevented. Once a particular

piece of autonomy has been taken, the agent must not take any action to counteract those

of the agent taking autonomy.

The reverse form of this is precedence, where autonomy is taken more than once. For

example, if a composite agent takes autonomy from a resource agent, a human administrator

must still be able to take that autonomy from the resource agent, also taking it from the

composite agent in the process.

4.2 Implementation

We now discuss methods of implementing the requirements of adjustable autonomy for the

autonomic computing management system described in section 3. We leverage Cougaar’s

features to meet adjustable autonomy requirements in our agent design.

10



4.2.1 Human Interfacing

While it is possible for a human (through an agent proxy) to manipulate the system using

the same techniques as agent-agent adjustable autonomy, this would be a difficult and cum-

bersome way to interact with the system. An agent proxy would either need to understand

the operation of every agent the human desires to control, or require the operator to com-

municate in the language of each agent. Neither option would present a usable interface to

the end user, limiting the system’s effectiveness.

We therefore leverage the fact that all Cougaar agents have a built-in Java servlet engine,

allowing each agent to present a web interface. This web interface is custom for each type of

agent, allowing for observation and control of that agent using controls appropriate to the

particular domain.

For advanced administration, a generic plugin can be loaded into all agents, presenting a web

interface for the manipulation of the agent’s blackboard. This ensures that the administrator

can always exert full control in cases where a custom interface lacks some required controls.

While using a web interface is effective for humans to take control, it requires an administra-

tor to initiate contact. For agent-initiated autonomy requests, a method for agents to initiate

contact with the user is required. This is handled by a single agent, the ‘autonomy agent’,

which is treated as a proxy for the human administrators. This agent has the responsibility

to determine which administrator should be contacted for a particular request, and judge

the urgency with which contact is required. It must have the ability to initiate contact with

administrators through means external to the system, such as pagers, emails, or warnings

on a central administration console.

4.2.2 Observability

The entirety of an agent’s state is stored on the blackboard1 and is therefore observable by

plugins. The agent’s plan is simply the tasks, assets, and allocations between the two stored

on the blackboard. The state of the managed element, including both measured conditions

and enforced configuration settings, are stored as condition objects on the blackboard.

1This is required for agent persistence and mobility, so most Cougaar agents take special care to diligently
maintain their blackboards.

11



Cougaar’s mechanisms for condition distribution will allow these to show up on the black-

boards of agents that wish to observe them. The Cougaar adaptability engine is a rule-based

condition monitoring library, and can be used as an efficient way to act when conditions ex-

ceed desired parameters.

Each agent is responsible for presenting a web interface appropriate for the management of its

own resource, including appropriate condition visualizations and simple control mechanisms.

Since local plugins can see the entirety of the blackboard, this ensures that the web interface

can also present the entirety of the plan, giving greater observability to humans than to

remote agents.

The plan elements themselves are difficult for remote agents to observe in an efficient manner.

This design limits observation by remote agents to condition objects only, though this is

acknowledged as a potential weakness.

4.2.3 Remote-Initiated Autonomy Transfer

Remote-initiated transfers of autonomy are maintained using Cougaar tasks. A task repre-

sents both the statement of a goal, and constraints in achieving these goals. Handing a task

to an agent is in essence taking autonomy, since the agent then is obligated to complete the

task, rather than doing whatever it wants.

We modify the concept of tasks by adding priority to these tasks. The priority of tasks

from agents in higher levels (eg. composite agents over resource agents) is strictly greater

for higher levels, and tasks originating from a human user always have the highest priority.

Agents must satisfy their highest priority tasks to the best of their ability, even if it requires

reporting failure on lower priority tasks.

Tasks have both preferences and constraints. The latter serves to limit autonomy: since an

agent is required to attempt to complete a task as specified, constraints limit the agent’s

behaviour, taking away its autonomy. Once a task specifies a constraint, the agent is forced

to abide by it unless a higher priority task comes along.

This can be extended to a policy system simply by adding a ‘null’ task. A task which requires

no further action to be taken, but has constraints serves as a policy that must be followed.

An agent is required to follow the constraints of all its tasks. Should these come into conflict,

12



the task with the highest priority will have its constraints satisfied, and failure reported on

the other tasks.

To return autonomy, the agent taking the autonomy need only rescind the task. The con-

strained agent will detect this and be able to re-plan to its liking.

4.2.4 Locally-Initiated Autonomy Transfer

Agents may wish to request additional autonomy should they believe themselves to be overly

constrained. Also, they could request autonomy they don’t strictly need to ask for, to give

an administrator the chance to review and confirm a course of action.

To request autonomy, the agent sends a ’request’ task to a higher level agent. Attached to

this task will be a template for the task it wishes to execute. To approve the request for

additional autonomy, the agent receiving the task allocates to the requester the template

task (possibly modified) with the priority of the granting agent. To reject the request, the

task status is set to failed.

The autonomy can be restored to previous levels at either time by either party by rescinding

the request task or the template task.

Giving up autonomy held by default is not accomplished through the task system, but

implicitly through observability. An agent uses its advertised conditions to indicate to other

agents that it has encountered a problem it cannot solve. In which case, an agent equipped

to handle it will take autonomy from the agent having trouble. If no other agent is equipped

to take the autonomy, then transferring the autonomy is not going to do much good.

5 Conclusions

It has been widely recognized that adjustable autonomy will be required to make usable

autonomic computing systems. We have described a cooperative multi-agent system to

satisfy the requirements of autonomic computing.

Requirements have been outlined for adjustable autonomy in the context of autonomic com-

puting. These requirements have been largely satisfied using features available in the Cougaar

13



multi-agent framework. Both users and other agents can take autonomy from other agents,

and give this autonomy back effectively. The autonomy taken can be very finely tuned, down

to individual constraints and actions, and agents will still act autonomously in areas it has

authority over.

5.1 Future Work

The most critical next step is to actually validate this design. This would involve a base

implementation and real-world prototype, measured for aspects of scalability, usability, and

efficacy.

Not described here are several questions about how individual agents make autonomy de-

cisions. The possible techniques used inside individual agents need to be investigated. Re-

questing autonomy in particular needs to be investigated in detail. Also, the effectiveness of

various approaches for determining who to request for autonomy should be investigated.

Finally, security concerns need to be addressed at the user level. The current model assumes

that any administrator or agent who can access the system has complete authority will be

insufficient for real-world applications. Investigations into distributing the required authen-

tication and role knowledge will be central to this approach, as well as placing limits on who

can request what autonomy from an agent.

References

[1] Autonomic Computing: IBM’s Perspective on the State of Information Technology, IBM

Research, Westchester County, N.Y., 2001.

[2] “Autonomic Computing,” IBM Research, http://www.research.ibm.com/

autonomic/ (current July 2004).

[3] “HP Press Kit: HP Adaptive Management,”, HP Newsroom: 2004 Press Kits, http:

//www.hp.com/hpinfo/newsroom/press_kits/2003/amlaunch/ (current July 2004).

[4] “Dynamic Systems Initiative,” Windows Server System, http://www.microsoft.com/

windowsserversystem/dsi/default.mspx (current July 2004).

14

http://www.research.ibm.com/autonomic/
http://www.research.ibm.com/autonomic/
http://www.hp.com/hpinfo/newsroom/press_kits/2003/amlaunch/
http://www.hp.com/hpinfo/newsroom/press_kits/2003/amlaunch/
http://www.microsoft.com/windowsserversystem/dsi/default.mspx
http://www.microsoft.com/windowsserversystem/dsi/default.mspx


[5] “Dynamic Assembly for Systems Adaptability, Dependability, and Assurance

(DASADA),” AFRL-Rome DASASA Program Home Page, http://www.rl.af.mil/

tech/programs/dasada/ (current July 2004).

[6] “Kinesthetics eXtreme,” Programming Systems Lab, http://www.psl.cs.columbia.

edu/kx/ (current July 2004)

[7] S. Brainov and H. Hexmoor, “Quantifying Relative Autonomy in Multiagent Intera-

tion,” proc. IJCAI’01 Workshop Autonomy, Delegation and Control: Interacting with

Autonomous Agents, pp. 27-35, Seattle, 2001.

[8] P. Scerri, D. Pynadath and M. Tambe, “Adjustable Autonomy in Real-world Multi-

Agent Environments,” proc. 5th Intl. Conf. on Autonomous Agents, Montreal, QC,

2001.

[9] P. Scerri and N. Reed, “Designing Agents for Systems with Adjustable Autonomy,”

ARTES Graduate Student Conference, Lund, Sweden, 2001.

[10] M.S. Kerstetter and S.D.G. Smith, “Adjustable Autonomy For Human and Information

System Interaction,” Autonomy, Delegation, and Control: From Inter-Agent to Groups,

tech. report WS-02-03, AAAI Press, 2002.

[11] R. Barrett, P.P. Maglio, E. Kandogan, J. Bailey, “Usable Autonomic Computing

Systems: the administrator’s perspective,” presentation slides, http://www.mathcs.

emory.edu/~vss/icac04slides/barrett-ibm.pdf (current July 2004), May 17, 2004.

[12] D. Dubie, “Net management’s new autonomy,” Network World, http://www.

nwfusion.com/supp/ii2003/0224iinetman.html (current July 2004), Feb. 24, 2003.

[13] D.M. Russell et al., “Dealing with ghosts: Managing the user experience of autonomic

computing,” IBM Systems Journal, vol. 42, no. 1, 2003.

[14] S.R. White et al., “An Architectural Approach to Autonomic Computing,” proc. Intl.

Conf. on Autonomic Computing, New York, NY, 2004.

[15] “Towards Open Grid Services Architecture,” The Globus Alliance, http://www.

globus.org/ogsa/ (current July 2004).

[16] M. Jarrett, “An Architecture for Self-Protecting Autonomic Systems,” tech. report,

University of Waterloo, Waterloo, Ontario, 2003.

15

http://www.rl.af.mil/tech/programs/dasada/
http://www.rl.af.mil/tech/programs/dasada/
http://www.psl.cs.columbia.edu/kx/
http://www.psl.cs.columbia.edu/kx/
http://www.mathcs.emory.edu/~vss/icac04slides/barrett-ibm.pdf
http://www.mathcs.emory.edu/~vss/icac04slides/barrett-ibm.pdf
http://www.nwfusion.com/supp/ii2003/0224iinetman.html
http://www.nwfusion.com/supp/ii2003/0224iinetman.html
http://www.globus.org/ogsa/
http://www.globus.org/ogsa/


[17] An architectural blueprint for autonomic computing, IBM, Hawthorne, NY, 2003.

[18] “An Open Source Agent Architecture for Large-Scale Distributed Multi-Agent Sys-

tems,” COUGAAR.ORG, http://www.cougaar.org/ (current May 2004)

16

http://www.cougaar.org/

	Introduction
	Related Work
	Autonomic Computing
	Adjustable Autonomy
	Adjustable Autonomy in IT and AC Systems

	Agent-Based Autonomic Computing System
	Architecture
	Implementation Technology

	Adjustable Autonomy in Agents
	Requirements
	Observability
	Remote-Initiated Autonomy Transfer
	Locally-Initiated Autonomy Transfer
	Persistence and Precedence

	Implementation
	Human Interfacing
	Observability
	Remote-Initiated Autonomy Transfer
	Locally-Initiated Autonomy Transfer


	Conclusions
	Future Work


