An Architecture for Self-Protecting
Autonomic Systems

GENE 401 - Special Directed Studies

Michael Jarrett
msjarret@Quwaterloo.ca

August 29, 2003

Abstract

Autonomic computing is the concept of designing complex information technology environ-
ments with the ability to perform management tasks on their own without human support.
These systems have been defined by their ability to self-configure, self-optimize, self-heal,
and self-protect. Administrators would only be required to specify the high level require-
ments of the system, rather than the mundate configuration of individual componts, greatly

reducing the human requirements for administration of large systems.

Self-protection refers to the ability of an autonomic computing system to secure itself against
intrusions, and react to protect itself when it detects that an intruder has successfully cir-
cumvented the security policy on the system. While many of the individual elements that
would be required for such abilities exist, very little research has been performed on how one
would combine these elements to create an autonomic security system to meet this criteria

of self-protection.

A structure for autonomic computing security systems is proposed by mapping responsi-
bilities that such a system would have to fulfil onto a basic architecture for an autonomic
computing system as described by IBM. This hierarchy is divided up into three layers. The
highest layer deals with policy inputs from the administrators themselves, both as generic
system-wide security policy, and as policies inherent in the requirements for each applica-
tion to be run on the system. The middle layer translates these into applicable policies for
collections of elements and coordinates the actions of individual autonomic elements at the
bottom layer. In the bottom layer reside the autonomic elements that provide the services

of the system, and are ultimately responsible for detecting and responding to intrusions.

Many components of such a system currently exist, and have been researched for many years,
such as policy specification, intrusion detection systems, and rational agents. Other com-
ponents, such as intrusion response and management technologies, are more recent research

topics, and not often explored in the context of autonomic computing.

It is proposed that an environment be designed to allow for experimentation into autonomic
security structures. This could be based on a future release of autonomic computing tech-
nology, on a new system created using existing distributed communication technologies, or

a simulation for experimental purposes.

Once such an environment is available, research can be done into autonomic computing secu-
rity structures and components. One interesting area is that of intrusion response, and more
specifically that of a security through diversity approach; where the autonomic computing

environment can respond to threats by replacing components with differing implementations.

Table of Contents

1 Introduction to Autonomic Computing 1
1.1 Key Corporate Players 2
1.2 Academic Work in Autonomic Computing 5
1.3 Research Groups and Conferences 7
1.4 Security in an Autonomic Computing Environment 10
2 Autonomic Security Attributes 0 00000000l 11
2.1 Security Aspects of Autonomic Systems 11
2.2 Self-Protection and Self-Healing 12
3 Structure of an Autonomic System 0000, 15
3.1 Autonomic Elements 15
3.2 Layers of an Autonomic Systemo 17
4 Security Design in an Autonomic System 19
4.1 System Layer 19
4.2 Composite Layer 20
4.3 Resource layer L 20
5 Challenges in an Autonomic Security System 26
5.1 Imntrusion Detection 26
5.2 Intrusion Response L 27
5.3 Security Policy Representation, 28
5.4 Operationalization of Security Policies 28
5.5 Autonomic Manager Communication 29
5.6 Security Decision Making oo 0oL 29
5.7 Self-Knowledge 30
5.8 Software Instrumentation for Security Management 31
6 Proposal for Future Work 00 0oL, 32
6.1 Preparing an Autonomic Computing Environment 32
6.2 Security Research 33
6.3 Timeline 35
References o o i i i e e e e 37

i

List of Figures

Basic Structure of an Autonomic Element

Nested Tree of Autonomic Elements

1
2
3 Layered View of an Autonomic System
4

Security View of an Autonomic Element

1ii

1 Introduction to Autonomic Computing

In October 2001, IBM published a manifesto describing their “Perspective on the State
of Information Technology.”[!] The document described what they viewed as a growing
problem in the information technology world - that computer systems are becoming more
and more powerful, and as applications were created to make use of this ever-increasing
power, information technology environments were becoming more complex. This increase
in complexity has resulted in computer systems taking more and more human resources
to manage, with this demand for management growing in a way that will ultimately be

unsustainable.

As such, they proposed a switch of focus to autonomic computing. The concept was ini-
tially inspired by the human autonomic nervous system, which handles critical tasks such
as breathing, digestion, and one’s heartbeat automatically without the need for a person to
actively think about it. Similarly, autonomic computer systems would take care of day-to-
day management without the need to involve human operators. The human operators would
feed in high-level policies, which the system would configure itself to satisfy to the best of
its ability.

IBM’s manifesto lists eight key attributes of an autonomic computing system, describing
how they envisioned what an autonomic computing system would consist of. Derived from
this are four key properties of an autonomic system, which have been quoted by almost any

entity with interest in autonomic systems. [2] [3]
e Self-Configuring: The system configures itself and its components to satisfy high-
level objectives, and can change this configuration as needed.

e Self-Optimizing: Adapting to demand on the system, making maximum use of the

resources available to it.

e Self-Healing: Handles unexpected failure in hardware and software, and can to repair

itself (or bypass broken components) without interrupting the running system.
e Self-Protecting: The system can detect unauthorized intrusions and respond to

these. The system actively attempts to secure itself against intrusion.

These four properties have become the standard way of defining an autonomic computing

system. While some research still makes references to the biological analogy to the human

nervous system, most now rely on defining the technology instead as any system that can

satisfy at least one of these properties.

Implied in each of these four properties (and the first on IBM’s list of characteristics) is the
aspect of self-knowledge. To manage themselves, these systems must become aware of their

own abilities, as well as the abilities of those they interact with.

1.1 Key Corporate Players

While IBM is widely credited with both initiating and leading the push for autonomic com-
puting, there are many other companies that have also spearheaded efforts into autonomic

computing technology.

Each corporate player offers their own I'T management software (Tivoli/System Management
Server /Openview), plus other offerings, which in many cases determine how the initiatives
differ. To date, no company has offered a complete operational autonomic computing in-
frastructure, instead choosing to integrate the concepts of autonomic computing into their
existing product lines. This has led to a variety of largely incompatible incremental improve-
ments in the products of each vendor, but does little in the creation of complete autonomic

computing systems on larger scales.

1.1.1 International Business Machines

http://www.research.ibm.com/autonomic/

IBM lead the way with it’s ‘autonomic manifesto’[1], where it outlined what it viewed as
a unsustainable information technology complexity problem, and proposed autonomic com-
puting as its solution. It went so far as declaring that it would recenter its entire research

division around the new notion.

While little has been done to form a standardized autonomic computing architecture, IBM
has been quick to create software components demonstrating some elements of its autonomic
computing push across a wide set of their products. Examples include a ‘site analyzer’ for
their WebSphere e-business platform, which monitors and interprets website visitor traffic
and usage, helping making e-business decisions, and also actively searches out and isolates
database errors and contacts the administrator to apply a fix. Also, a variety of autonomic
computing tools for their Tivoli system management platform have been announced, en-

compassing software distribution, storage, and centralized management. Recently they have

http://www.research.ibm.com/autonomic/

announced new technologies for ‘adaptive forecasting’, ‘rapid reconfiguration’, and ‘on-line
capacity planning’, again with plans for incorporation in their WebSphere e-business plat-

form.

IBM is perhaps alone in actually publicizing their vision of autonomic computing systems.
One of the most relevant documents published is their description of an architecture of an
autonomic system[], where they outline the components of an autonomic system and the
structure of an ‘autonomic manager’ in terms of ‘control loops’. They are also one of the few

to actually propose a generic structure of autonomic managers from a security perspective[5].

1.1.2 Microsoft

http://www.microsoft.com/management/default.mspx

While Microsoft tends to avoid the word autonomic itself, they have recently unveiled a large
set of technologies concentrating on self-management under the moniker of the ‘Dynamic
Systems Initiative’ (DSI)[6]. This initiative encompasses a variety of Windows-based tech-
nologies, including Microsoft Operations Manager (MOM), and Microsoft Systems Manage-
ment Server (SMS), encompassed under a new XML-based System Definition Model (SDM).
While light on details, Microsoft describes SDM as a way both for SDM-aware software to
communicate with each other and with management software, as well as a standard way
for management to represent system requirements and objectives. Promised is support for
SDM under new releases of Microsoft’s Visual Studio .NET development tool suite, which
will allow application developers to ultimately develop applications that interact with MOM

to self-optimize and self-heal.

Microsoft intends for the Windows operating system to have initial support for SDM in their
2004 Longhorn release of Windows with their entire management infrastructure scheduled to
be finalized by the Blackcomb release, scheduled for 2006. Visual Studio .NET integration
of SDM and related tools should be complete later this year, but very few details have been

released thus far.

Microsoft has released Automated Deployment Services (ADS) and the Windows Systems
Resource Manager (SRM) with Windows Server 2003, in the hopes of building support for
its version of autonomic computing. ADS is a system to allow software to be automatically
be deployed to a managed set of Windows servers, while SRM allows processor, memory,
and other IT resources to be managed and distributed to particular tasks and applications.
With the release of these tools, Microsoft hopes to improve its reputation in terms of system

management to garner support for later released in the DSI.

3

http://www.microsoft.com/management/default.mspx

Microsoft has announced the support of several partners for its initiative, including IBM,
Fujitsu, and NEC. Many of these efforts involve support for the vendors’ hardware platforms,
though NEC has stated that it intends to incorporate the effort into it’s own autonomic

computing push.

1.1.3 Hewlett Packard

http://managementsoftware.hp.com/solutions/sol_0001.html

Under the name of the Adaptive Management Platform, HP is adding a wide selection of
autonomic enhancements to its HP OpenView multi-platform management suite, as well
as HP’s Utility Data Center. A true advantage to these tools is their ability to integrate
with many other applications including offerings from Microsoft and IBM. System-specific
enhancements to HP servers as part of the Adaptive Management Platform are also being
offered.

HP plans to make specifications and APIs for the HP Utility Data Center autonomic systems

available later in the year.

1.1.4 Sun Microsystems

http://wwws.sun.com/software/learnabout/n1/

Sun’s N1 platform, a catch-all name for most of their latest server platform, is looking to

support the autonomic computing initiative as well.

It is not Sun’s intention (at least so far) to replace conventional Systems
Management Software for monitoring such as CA’s Unicenter, Tivoli, or BMC,

but rather to sit beside it and send and receive information from such systems.|7]

Slightly different than the other offerings, Sun’s N1 is looking to provide some of the lower-
level virtualization that could be used in other management system. This could eventu-
ally lead to self-optimizing systems. However, recently Sun has been demonstrating self-
configuring characteristics in several of their storage systems, so more things may yet be

planned.

http://managementsoftware.hp.com/solutions/sol_0001.html
http://wwws.sun.com/software/learnabout/n1/

1.1.5 NEC

http://www.sw.nec.co.jp/innovation/it/valumo/english/

NEC is working on what they call a “platform concept” for VALUMO (“VALUe” + “MOre”).
The key points highlighted are those of autonomy, virtualization, and distribution, and what
little English language details are available describe a system much like what IBM describes

as an autonomic computing system. Unfortunately, there is little in the term of English
language details published on the VALUMO platform outside of NEC.

While not a product in itself, VALUMO serves as a concept that can be applied to their
variety of products on both the hardware and software levels. Microsoft has indicated that
it is collaborating with NEC to incorporate support for technologies based on their Dynamic
Systems Initiative into the VALUMO platform.

1.1.6 Palladia Systems

http://www.palladia.net/

While still deep in ‘stealth mode’, this company has made bold promises to deliver what
they consider to be the first autonomic computing infrastructure developed independent of
an existing product line. Their “Angela” product will provide a base on which advanced

autonomic applications could be developed.

Angela works on the basis of IBM’s eight characteristics of an autonomic computing envi-
ronment, plus adds the requirement that the system “must operate in an ecosystem”. The
environment in which the system operates must be considered as well as the system itself,

according to Palladia.

Differing from many other companies, Palladia has placed a strong focus on self-protection.
An entire architecture has been developed around determining whether a particular piece
of data is in fact secure. Extra efforts have been made to add virus prevention capabilities.

Even physical security will be taken into account in an attempt to secure systems.

Unfortunately, due to the lack of serious publications from the company, nothing can be

stated for certain about the results of their efforts until their first product release.

1.2 Academic Work in Autonomic Computing

Many research groups have taken up the call to develop autonomic computing technologies.

Most have chosen to focus on very small subsets of autonomic computing, or to related

http://www.sw.nec.co.jp/innovation/it/valumo/english/
http://www.palladia.net/

technologies that could be used in an autonomic system. Some work independently, while

others under the close watchful eye of one of the major corporate players.

While many research institutions have projects that can be related in some aspect to auto-
nomic computing, only those that are heavily quoted as supporting the field are mentioned

here.

1.2.1 University of California, Berkeley

One of the most-quoted research projects of the autonomic movement is the Berkeley /Stanford
Recovery-Oriented Computing(ROC) Project [3]. This project is looking to develop methods
to, rather than prevent software failures, to detect and recover from them quickly. Experi-
ments at Stanford University to add ‘recursive restartability’ to the Mercury project [9] - a

software system used to manage a satellite uplink base station - met with great success.

Though not directly related to autonomic computing, Berkeley’s Computer Science depart-
ment have several projects frequently quoted by those working on autonomic systems. One
is the Telegraph project, which is an adaptive dataflow system, used for aggregating and
analyzing data brought in over the network, and adapting dataflow to manage unpredictable
network performance. Another project is the OceanStore project, which is a massively dis-
tributed persistent replicated filesystem. While neither of these projects are autonomic,
some of the features of autonomic computing (self-optimizing and self-healing respectively)

can be implemented on top of these platforms.

1.2.2 Columbia University

http://www.psl.cs.columbia.edu/dasada/

The DARPA-funded Dynamic Assembly of Systems for Adaptability, Dependability, and As-
surance (DASADA) concentrates on creating autonomic systems and systems of systems
running legacy software. Specifically the Kinesthetics eXtreme (KX) project provides an
implementation of these designs based on a variety of XML communication technologies.
The system defines a four-tiered model using interlinked sets of software ‘probes’, ‘gauges’,

and ‘effectors’; linked over a series of standard communication busses.

The project has produced a prototype for KX, apparently available for download from their

website, though initial requests to access this software were denied.

http://www.psl.cs.columbia.edu/dasada/

One appealing factor of this project is that it provides a number of communication tech-
nologies and underlying architecture on which autonomic computing concepts can be exper-

imented with openly.

1.2.3 Carnegie Mellon

http://www.cmu.edu/

Carnegie Mellon has a variety of reserach projects in specific areas of autonomic comput-
ing, covering a wide spectrum of their own departments, and many topics of autonomic

computing.

The Architecture Based Languages and Environments (ABLE) project is a DASADA-sponsored
project, and has several projects involving the use of architecture and specifications for self-
adaption. Their ‘Acme’ architecture description language has found great popularity, within
ABLE, within other DASADA projects, and in the community at large.

IBM quotes Carnegie Mellon for a completely different set of projects, namely those on self-
securing storage and devices, both under the wing of their Parallel Data Lab. Self-securing
storage creates a storage infrastructure that is resistant to attack through the logging of
writes and separation of storage from the client OS that reads it. Self-securing devices looks
at making devices indepenedently have the ability to secure themselves, and have the ability

to note activity around them for suspicious activity.

1.3 Research Groups and Conferences

Large-scale coordinated research efforts in autonomic computing are currenly relatively un-
common, with the exception of the US Government project “DASADA” described below.
The related and slightly more mature fields of grid and pervasive computing have formed
collaboration efforts, and more formalized research collaborations will likely start to form
in autonomic computing as it matures as well. Several workshops have been run on differ-
ent aspects of autonomic computing, though there is not yet a well-recognized conference
focusing solely on it. This will likely change as well, again similar to grid computing and

pervasive computing, as the field matures.

http://www.cmu.edu/

1.3.1 Conference Workshops

Autonomic computing has thus far been limited to workshop topics, rather than entire

conferences, though several of these workshops appered in 2002 and 2003.

http://www.cse.psu.edu/ yyzhang/shaman/ The Workshop on Self-Healing, Adap-
tive and self-MANaged Systems (SHAMAN), has covered much of the published academic
work on autonomic computing. Sessions for the 2002 workshop included reliability and re-
covery, systems support for self-healing, frameworks for dynamic adaption, self-monitoring,
and adaptive networking. The 2002 workshop was hosted in conjuction with the 16* Annual

ACM International Conference on Supercomputing.

http://www.caip.rutgers.edu/ams2003/AMS2003.htm The Autonomic Computing
Workshop is actually part of the workshop on Active Middleware Services (AMS 2003).
It hosts a variety of papers, including autonomic applications, storage, middleware, and

architectures.

http://tesla.hpl.hp.com/self-manage03/ The first Workshop on Algorithms and Ar-
chitectures for Self-Managing Systems, while not often mentioned on its own, features spon-
sorship from big names: the International Symposium on Computer Architecture (ISCA)
and the International Conference on Measurement and Modeling of Computer Systems (SIG-
METRICS) of the ACM. Topics seem fairly focused on individual uses of autonomic comput-

ing rather then general architecture, and there is an entire session dedicated to self-healing.

1.3.2 DASADA

http://www.schafercorp-ballston.com/dasada/index2.html

The Dynamic Assembly for Systems Adaptability, Dependability and Assurance (DASADA)
project is a research effort funded by the Defence Advanced Research Projects Agency
(DARPA), which is a branch of the United States Department of Defence. Its goal is to cre-
ate technologies that would allow for the creation and recomposition of systems at runtime,
and monitor the system to ensure it functions correctly. This must be done in heterogeneous

environments, and must be able to operate autonomically.

The DASADA project consists of several university and industry research efforts into a

variety of areas that are important to autonomic computing. A strong level of co-operation

8

http://www.schafercorp-ballston.com/dasada/index2.html

has been shown between the projects, with much of the work becoming interdependent over
its term. A structure for measuring and monitoring in terms of ‘probes’ and ‘gauges’ has
been developed, and a fair deal of sharing of the related technologies for implementing these

has taken place.

1.3.3 The Globus Project

http://www.globus.org/

The Globus Project concentrates on creating standardized environments for grid comput-
ing. Grid computing has much in common with autonomic computing, in that a grid is
distributed, often across organizational boundaries, and distributes workloads across the re-
sources in the system. While this relates most closely to self-optimization, a working grid
computing environment by nature is self-healing, and to a lesser extent self-configuring and

self-protecting.

The Open Grid Services Architecture is being developed as a standard for grid services, based
on many of the recently standardized web services technologies. The Open Grid Services
Infrastructure has reached version 1.0, and defines mechanisms for “creating, managing, and
exchanging information among entities called Grid Services.” [10]. The advantage of this
in an autonomic computing environment is that standards are actively being produced, so
unlike many of the current corporate offerings, allows for research and reasoning to be applied

to the design.

The Globus Project released their 3.0 version of the Globus Toolkit in July 2003. The Globus
Toolkit is an open-source set of services for distributed and grid applications, and in version
3.0, is a direct implementation of the OGSI standard. The many communication services

that this toolkit provides has led many vendors to base their offerings on top of this.

IBM, being one of the many companies offering their support for OGSA, has developed
a middleware layer called OptimalGrid[l1], which provides autonomic capabilities in the
deployment and execution of a grid application as a layer on top of OGSI. This project uses
autonomic computing techniques to hide complexity of a grid computing environment from

the end user of such an environment.

HP has also declared their support for the OGSA, contributing significant research effort to
the Global Grid Forum (GGF). The GGF is a group of technology companies and researchers
dedicated to developing grid technology, and have contributed to efforts on the OGSA and

other projects.

http://www.globus.org/

1.4 Security in an Autonomic Computing Environment

Security is a key concern to any autonomic system. One of the four key attributes so loved
by the media is self-protection. Number five in IBM’s eight attributes of an autonomic

system even explicitly states this.

A virtual world is no less dangerous than the physical one, so an autonomic

computing system must be an expert in self-protection. [1].

This element has been systematically ignored and downplayed by most designers of auto-
nomic computing technologies, as well as those developing them. It suffices for most vendors
to state that their systems will, in fact, protect themselves, and rarely provide details on

how, or evidence that they in fact can self-protect.

The most notable general document on autonomic computing security is from IBM[5], which
describes the general behaviour of an autonomic security system. This is done only from
the basic view of an autonomic element and does little to explain the overall architecture.
Except for some basic offerings for their storage manager, again focusing on information

access control, little has been done to add self-protection to their products.

Academically, there has been a lot more attention paid to autonomic self-protection. Re-
search has focused mostly on systems that resemble modern intrusion detection systems
(IDS), and put very little focus on how they could tie into a larger autonomic security

structure.

One popular approach in autonomic system security, which fits in well with autonomic com-
puting’s biological analogy is that of computer immune systems. Research at the University
of New Mexico [12] has applied the concepts found in the human immune system to create
a general self-aware artificialimmune system (ARTIS)[I13]. The system has been applied in

a number of security contexts, including network intrusion detection.

Often paired with the issue of security in autonomic, grid and pervasive computing systems
is the concept of trust management. Trust management deals with the specification and
enforcement of access, usage and privacy policies, all of which can be considered part of a
security policy. In this report, we will focus more on cases where security policy has been
already circumvented, and as such will not touch upon trust management except where it

relates to the failing of a security policy.

10

2 Autonomic Security Attributes

In many ways, computer security is faced with much the same problems in an autonomic
environment environment as in traditional computing environments. Administrators of a
system wish for the system to be able to be used in a certain manner, and attempt to
configure the system to prevent it from being used in ways that were not intended. A
malicious user wishes to perform an operation not allowed by the administrators, and will
do their best to achieve this by any means possible. Often, this can be accomplished by

finding flaws in computer software or computer operators.

Some similarities to traditional computing security include:

e Ultimately, there is some collection of humans making security policy decisions, and

operationalizing these into computer configurations.

e The threats are similar, and at least for the immediate future, the modes of attack are

likely to be the same.

e Some number of flaws in software will always be discovered and used by malicious
users before they are discovered and fixed by the software designers. The flaw may be
further exploited between the time that a solution is found and the solution is applied

to all systems.

e There are inevitable tradeoffs between security and ease of use and performance.

2.1 Security Aspects of Autonomic Systems

Autonomic computing introduces some new features to a system which could affect the
potential for security. Some of these features lead to restrictions on what solutions can
be applied, while others guarantee capabilities that can be used to the advantage one the

implementor of security systems.

Autonomic systems by definition have the ability to reconfigure themselves to
certain situations. This means that security implementations have to be dynamic; they
must adapt to provide the best possible security for a particular configuration while not
interfering with the deployed services, even if those deployed services change. However, the
ability to reconfigure provides a tool for autonomic security systems, which can rely on this

to configure individual components to reflect the desired level of security.

11

The decision making elements of an autonomic system could themselves could
become a target of attackers. These powerful components, if compromised, could easily
be used to instantly apply the attacker’s own design to a system. If the attacker gains control
of a higher-level autonomic management component, a policy could be put in place to not
only compromise all components under its control, but to actively resist any attempts by
the original managers to reassert control. A great deal of protection will have to be offered

to the autonomic managers themselves to prevent their compromise.

Number seven of IBM’s eight attributes of an autonomic computing system states:
An autonomic computing system cannot exist in a hermetic environment. [1]

Autonomic systems are by definition heterogeneous, and implied by this is the fact that
they are distributed. It cannot be guaranteed that all elements of an autonomic system are
under the control of those defining security policy. This creates a challenge in that isolation
cannot be relied upon for security. Further implied is the fact that a wide variety of systems
must be protected, including legacy systems not designed to be autonomic at all. However,
this presents an advantage found in many biological systems - that of biodiversity. Since
an autonomic system has to be able to handle heterogeneous environments, this gives it the
ability to prevent or respond to threats by diversifying itself. Some research has experimented
on introducing small variances in the same application at compile and load time to provide
this biodiversity [14]. Even if an attack successfully takes control of several elements of our
autonomic system, it is very unlikely that any one threat would successfully compromise the

entire system.

Perhaps the most important aspect of autonomic computing is the ‘autonomic’ part. Most
security systems attempt to hide or close security holes such that they cannot be exploited
in the first place. More advanced is the research area of “intrusion detection systems”, which
focus on detecting when a security violation has occurred. However, the vast majority of
these systems only go as far as notifying the administrator of the system. Missing is the
ability for the computer to respond to attacks, or to the threat of attack. Adding these

abilities for intrusion response will be a key aspect of autonomic computing security.

2.2 Self-Protection and Self-Healing

The area of security in an autonomic computing environment often overlaps with that of
self-healing. This serves as an advantage in that security can often benefit from and make

use of self-healing abilities, but often suffers where one is used when the other is appropriate.

12

Self-healing approaches can often be applied to self-protection of systems. In terms of de-
tection, many indicators that may lead the system to believe it is not healthy may also be a
sign that the system has been compromised. In the same manner, an attempt to restore the
system to a working state may also revert maliciously damaged software to a clean state.
For example, a paper on ‘self-cleansing’ systems[15] demonstrated a periodic cleansing of a
system could be used to limit the damage potential of an attacker, using a technique very

similar to software rejeuvenation.

However, self-healing and self-protection ultimately are attempting to guarantee different
things: self-healing attempts to keep the system operational and meeting the requirements
of its users, while self-protection is attempting to prevent the system from doing things it
is not supposed to do. These can be conceptualized as the difference between obligation
policies and restriction policies . While a failure to meet an obligation may affect the ability
to enforce restrictions or vice versa, the two can also occur independently. In fact, to avoid
detection, an intruder may rely on this fact, as an unhealthy system could indicate the

intruder’s presence.

Self-healing is concerned with the system meeting the requirements of its users; these re-
quirements may be dynamic, and are not black-and-white. In fact, it is usually preferable to
meet some obligations rather than none at all. Self-protection is not concerned if the system
does not meet its goals, as long as it prevents any prohibited actions from occuring. Like

self-healing, it it better to enforce some restrictions than none at all.

One difference between self-healing and self-protection is that the success of self-healing can
be improved by healing the system to fulfill requirements again. If a self-healing system
can heal quickly, it can minimize visible failures to meet obligations. In self-protection on
the other hand, once a prohibited action can be performed, it can never be guaranteed that

self-protection can recover from this action.

A collary to this is that we cannot accept the notion of ‘acceptable levels of intrusion’, like is
sometimes possible in self-healing. A paper[l16] by Mary Shaw suggests that exact software
specifications make implemented systems brittle, and that a system may have a fuzzy range
between normal and broken that is degraded but ‘good enough’ for its purposes. This relies
on several aspects of software health, namely the assumptions that the system can be more
healthy than required by the users, and that there is in fact a gradual transition between
healthy and unhealthy. These two assumptions do not always hold in general, and in terms
of self-protection often do not. In a system with redundancy and self-healing, this approach
can be used for many forms of failure, but is not useful for self-protection since a failure in

security policy can happen at any individual component of a redundant system.

13

Threats to the success of self-healing and self-protection are also very different. Hardware
failures often can be modelled accurately with probability distributions, and the failures
caused by software bugs can also sometimes be described as random. While failures of
components are often not independent of each other, unrelated components in many cases
should not be affected by the health of other components in the system. Security violations
are most often triggered by the direct actions of a user attempting to cause them. Here,
the only thing that can be modelled as random is when a vulnerability is first targeted.
An intruder will often purposely rely on the worst case scenario for a failure, breaking
many assumptions regarding randomness. Furthermore, the spread of a compromise between

components must also be assumed to be worst case rather than independent.

The difference in goals and threats to these goals between self-protection and self-healing
makes it important to distinguish between them, but the connection between them also

should not be ignored.

14

3 Structure of an Autonomic System

IBM’s autonomic architecture document[!] outlines the basic structure of an autonomic
system, and provides a base upon which the structure of an autonomic security system
can be reasoned about. While no direct implementation is publicly available to support
this, descriptions of similar architectures by many others, such as NEC, imply that such

structures are appropriate and will likely resemble the final forms of such a system.

3.1 Autonomic Elements

The basic building block of an autonomic system is the autonomic element, as shown in
figure 1. An autonomic element consists of an autonomic manager, and a managed element,

formed into what can loosely term as a control loop.

| Sensors | Effectors |

Autonomic Element

Autonomic
Manager
AL

Sensors H Effectors

Figure 1: Basic Structure of an Autonomic Element []

Managed
Element

The managed element could be one of a variety of things. It could be a legacy software
component, for example, a web server or FTP server. It could be a component designed
specifically for an autonomic element, which provides defined interfaces to ease measurement
and control of the managed element. It could even be a collection of other autonomic elements
where the sensors and effectors of the main autonomic element would communicate with these

lower level components.

The nesting of autonomic elements leads to the idea that a complex autonomic element can
be constructed with a nested tree of simpler autonomic elements, as shown in figure 2. In

this system, an autonomic manager would manage its managed component by contacting

15

the autonomic managers of the nested components and coordinating them to perform the

required tasks.

C Autonomic Manager >

~ HManaged Element -~

— e

—_ J—

Figure 2: Nested Tree of Autonomic Elements

An autonomic manager provides the intelligence to an autonomic system, functioning as a
utility-based rational agent. It relies on two connections to the managed element: sensors to
observe the state of the system, and effectors to manipulate it. This autonomic manager’s
implementation may differ dependant on the scale of which it is implemented. On a single
computer, this may be nothing more than a process. On a network of computers, perhaps
it is a server dedicated to coordinating the network’s devices. One could even envision an
autonomic manager being virtual, formed by a distributed collection of nested autonomic
managers coming to a group consensus about decision - this sort of system would strongly
resemble a co-operative multi-agent system, and has the advantage of additional fault toler-
ance. Such a distributed autonomic manager would also have the advantage of being able

to be replaced if compromised.

16

3.2 Layers of an Autonomic System

A system capable of redistributing itself across multiple systems cannot be described in
terms of hardware components, or even in terms of software components. Ultimately, these
concerns are something to be dealt with by the autonomic system, and ideally something
that an administrator would never even need to consider. This leads to the concept that the
administrator specifies policy in terms of the autonomic computing system’s tasks, and not

in terms of any particular hardware or software element.

IBM responds to this by dividing decision making into three different ‘decision-making con-

texts’:

e Resource element contexts represent individual individual resources or components
in a system. This could include a single server, a software application, or any other

physical or logical component of the system.

e Composite resources contexts represent pools of resource elements. This context
allows a resource to be generalized and utilized as a whole rather than as a set of
individual devices. It also allows for resources to be shared across multiple systems.
An example of this would be a storage context, which could allocate storage based on

the requests it has received and the total storage need of the system.

e System contexts (described in the IBM literature as ‘business contexts’) represent
the overriding goals and objectives of the system. This is the layer that understands
the goals of the system and makes use of the resources available within the system
to accomplish them. An example of this would be a payroll system, or a scientific

calculation application.

One can view these contexts as a layered system, as shown in figure 3. At the boundary of

each layer, policy undergoes a significant translation.

17

Administators

System Layer

Conyposite Layer

L AN LN
: LA . I

Resourcee Layer

Figure 3: Layered View of an Autonomic System

18

4 Security Design in an Autonomic System

4.1 System Layer

Security, like everything else in an autonomic system, starts with the administrators with a
security policy. This policy is communicated to system contexts through some user interface,
and most likely in a very general context. Security policy is not always necessarily specified
explicitly as a security policy, but may be inferenced as a requirement of other policies
requested by the administrator. A system’s basic requirements may require changes to
security policy, for example, opening ports on firewalls, or granting access to authentication

systems.

Security policies can be associated (directly or otherwise) with each application, plus a ‘secu-
rity system’, which would enforce general properties of security that would be independent of
any particular system. The autonomic managers of these systems are responsible for dividing
up the information and sending it to the correct pools in the composite layer. Furthermore,
the system layer must translate policies into forms that will be understood by the composite

layer.

Communication may not only originate with the administrators, but with lower levels as well.
Important alerts may be sent from the composite layer, which may have itself forwarded these
messages as appropriate from individual autonomic elements. The system layer may decide
to filter these messages, or based on a high-level policy, instruct the system to take action.
Some of these messages, if sufficiently critical, may be sent to administrators through a

variety of communication mediums.

Systems will rarely take direct actions to correct security flaws, instead relying mostly on
informing administrators of problems or shutting down the entire system in response to
a failure. The compromise of a composite pool of resources indicates that every resource
element has become compromised, and that all actions taken by the autonomic manager
at that layer to correct this have failed. There is little else that can be done at this point
unless the system can somehow continue without any resources of that type, however, it is

predicted that this will be a rare situation.

While not very effective in preventing intrusions, systems could be essential in detecting
intrusions, serving as the communications link between composite contexts. By aggregating
reports from multiple composite layer elements, a system can determine better than any

individual element the overall state of security in the its system.

19

4.2 Composite Layer

In the composite layer, policies are received by the system layer. The system only sends
relevant policies to a particular composite context. This is where a large amount of conflict
resolution will have to occur - systems may have different policies and requirements that
affect security decisions, and a composite context will have to take them into account in
searching for a solution. In some cases, a set of requests may not even be possible to fulfil,

in which case the composite layer must report such a case to the relevant systems.

In cases where policies from different systems conflict, it may be possible that both can
be satisfied by fulfilling the request with separate resource elements. A good example of
this is the requirement of a system for an amount of secure storage space. The composite
context may have normally chosen to distribute the allocation among several shared storage
devices, as well as several general-purpose servers under the control of the composite layer,
but with the security requirements in place, it may instead choose to take exclusive control
of one server for this storage, and disallow any further use of the server by other composite

contexts.

Most security policies required by a system context will be relayed to every resource element
used to operate the system. The individual resource elements will be required to take direct

action to satisfy these policies.

The composite layer has a great deal of ability to detect security breaches. Unlike resource el-
ements, composite contexts are able to aggregate data from multiple nodes. More knowledge
can be inferred if suspicious behaviour is seen from multiple resource elements, or perhaps
even more suspicious when only seen from one resource element. Reports of possible intru-
sions from all resource elements of a specific type could often indicate vulnerabilities in that

type of element being exploited.

As well as detection, the composite layer has the ability to respond to intrusions. Possible
responses in this layer could be to remove a compromised resource element from the pool
of resource elements, and redistribute its former workload to other resource elements, to
distribute a security patch to fix a known problem, or to notify resource elements to tighten

security policies temporarily to outlast an attack.

4.3 Resource layer

While a few decisions have been made at higher layers, it is ultimately up to the resource

layer to protect its individual elements.

20

Ultimately, a resource element is nothing more than an autonomic element, as shown in sec-
tion 3.1. In most cases, this autonomic element will be a piece of hardware, such as a server,
or router. In many cases, the autonomic element may have many embedded autonomic

elements - in a server, for example, these could represent individual software components.

IBM envisions an autonomic element as being able to affect the managed element from a
security standpoint by control directly into the managed element, as well as control over the

flow of data into and out of the component, as shown in figure 4.

MANAGEMENT
CHANNEL
(OUTPUT)

FUNCTONAL
CHANNEL
(OUTPUT)

AUTONOMIC
ELEMENT

ACCESS
CONTROL

+—
MONITOR,
CONTROL

ACCESS

CONTROL

MANAGEMENT FUNCTONAL
CHANNEL CHANNEL
(INPUT) (INPUT)

Figure 4: Security View of an Autonomic Element [7]

This diagram was designed with information security in mind: the autonomic manager
being given the capacity to block information that should not be allowed to enter or exit
the managed element. However, the approach is in no ways limited to information security.

When applied to control components, a wide variety of policies can be efficiently enforced.

For example, one can treat the operating system kernel as a managed element, and have an
autonomic manager that monitors system calls entering the kernel, filtering out those which
would if successful defy the security policy. The BlueBoX[17] intrusion detection system is
an example of one such system that does exactly this for the Linux kernel, though there are

many other examples.

Here, a hierarchical set of embedded autonomic elements becomes a more important concept.

Within a system, a process acts as the autonomic manager for the machine, tracking what

21

resources are available within the machine, and what resources can be utilized for particular
tasks. It is also be a single contact point for the composite layer. This autonomic manager
would be capable of starting processes on the machine, such as a web server, or a file
replication service. Each of these processes would be started, possibly with its own autonomic
manager. If these processes have an autonomic manager, that autonomic manager will

communicate directly (and solely) to the autonomic manager that spawned it.

Autonomic managers at the resource level have a large number of security duties, as outlined

below.

4.3.1 Preventative Measures

Autonomic managers should take measures to pro-actively enforce security. These will in
most cases not be done in response to any intrusion, and at times not even with an explicit

mandate from another layer (though of course, it must be within the allowed bounds of the
policy).

The key to preventative measures is not interfering with other aspects of the system. For
example, an automated virus scan should not use the majority of the processing power on
a server dedicated to a parallel computation. Another example is a firewall - the autonomic

manager must be careful to open ports for services it is running publicly on the machine.

Some examples of preventative measures include:

e Applying security patches to software periodically, with the assumption that there is
a secure source to retrieve these from. Other autonomic elements can temporarily

replace the resource if it cannot patch while running.

e Installing, monitoring, and updating firewalls to suit whatever services the autonomic

element provides.

e Periodically scanning for viruses (if the security policy allows access of the data to be

scanned), and verifying that key executables have not been changed.

e Checking security aspects of programs before they are installed. Techniques that can
detect potential security flaws in software executables can warn higher-level autonomic
managers of these flaws, and potentially could result in a more secure version being

deployed instead.

22

e Diversifying executables to prevent attacks that rely on specific binary versions of an

executable.

e Training intrusion detection systems that rely on detecting anomalous behaviour. This

can only be done if the system can be kept secure while training is in process.

Many of these preventative measures will have to be evaluated and applied at the time a
particular resource or service is first deployed to an autonomic element. In certain cases,
the decisions about how to service a request may be affected by the security decisions of an
autonomic element - in fact, a preventative measure taken to ensure security may well be to

refuse a request outright, forcing the higher layer to consider a new solution.

4.3.2 Intrusion Detection

A resource element itself must be capable of determining whether or not it has been compro-
mised. To this end, an autonomic manager must have available to it a number of intrusion
detection systems (IDS). These intrusion detection systems perform monitoring of traffic into
and out of the element to determine a compromise, and if combined with intrusion response

systems, may even choose to prevent the flow of data if it is detected to be corrupt.

No single IDS can hope to fulfil the requirements of every autonomic computing environment
for every task. The autonomic manager must therefore have a selection of IDSs at its disposal.
This implies the need for modular IDSs that can communicate to an autonomic manager in

a standard way its detection capabilities and what resources it requires to operate.

An IDS must have a standard way of communicating knowledge of the security state of the
system to the autonomic manager. Many techniques from the artificial intelligence world for
representing uncertain knowledge could be used here. Certainty factors and fuzzy logic have
been used extensively in agent-based expert systems in the past, and would likely both be
very effective here. Each IDS module would minimally have to answer, “has my component
been compromised?” Assuming the use of certainty factors, an intrusion detection system
could respond -1 to indicate that it is sure that the component is operating securely, 1 to
report that the component has been compromised, or 0 to indicate it is uncertain. Any
intermediate value would represent some level of certainty between these. An autonomic
manager would based on its security policy decide at a certain level of certainty to take

action.

More intelligent IDSs could return more information to the autonomic manager, especially

23

when it has some certainty greater than zero of an intrusion. Several sample predicates

include:

e Has an intruder gained access to administrative privileges?

Is malicious code running on the system?

Could the intrusion allow an intruder affect other autonomic elements?

Has an attacker attempted (and failed) to penetrate the system?

Is a denial-of-service attack in process?

An autonomic manager which prioritizes security could easily run several IDSs concurrently,
and combine the data from all of them to gain more certainty of the state of the system.
In cases where the state remains ambiguous, an autonomic manager can also temporarily

deploy additional IDSs to make a decision.

In nested autonomic elements, data from intrusion detection systems will often need to be
communicated to parent elements, or even up to the composite layer, as the manager of
each aggregation of elements will be better able to determine the pattern or existence of an
intrusion. This flow of information can be both push and pull based, with relevant changes
in state being pushed up to higher levels, and requests pulled up when a higher-level element

requires up to date information to make a decision.

4.3.3 Intrusion Response

Intrusion response is relevant at all layers, but more so at the resource element layer, where

autonomic managers can have the greatest flexibility in response to intrusions.

Assuming that at some level an intrusion detection system has decided with sufficient cer-
tainty that an intrusion has taken place, the system must decide how to respond. This will
involve a great deal of communication to all layers. Even if a local autonomic element is
capable of handling the intrusion, a higher level action may be appropriate in response, for
example, if the same intrusion is affecting a large number of elements. This distributed

decision making is very much like a co-operative multi-agent utility-based system.

At higher levels, very few options are available to autonomic managers. Most actions at these
levels will involve adding, removing, or shutting down resources. If the top-level managers

of the resource element layer are not compromised, higher levels can instruct these to take

24

specific actions to correct the situation. For example, the system layer could determine that
a security breach can be solved with a patch, which would get distributed to the composite
layer and eventually down to the resource layer. In this case, however, it is ultimately the

responsibility of the resource layer to apply these patches.

Autonomic elements at the resource level will have a great deal of flexibility in responding to
intrusions, as they have knowledge of the inner workings of the system. Often, a corrupted
process can be restored to a checkpoint state or restarted, using many of the techniques that
will also apply to the aspect of self-healing. A process could be configured to run in a more
secure mode in response to certain ongoing attacks. In some cases, the managed element
itself may have been instrumented to allow it to respond to attacks. Autonomic elements
controlled by an autonomic manager can be replaced with fresh copies of the element, or

even with different elements capable of providing the service.

25

5 Challenges in an Autonomic Security System

Each of the following sections outlines a critical component in an autonomic security system.
The currently available technologies and approaches are listed, as well as potential areas for

future study.

5.1 Intrusion Detection

An autonomic system needs to be able to detect intrusions. This is a problem that has
been studied for many years outside of the context of autonomic systems, called intrusion
detection systems (IDS). These systems vary wildly is design, but in general are classified by

the following attributes. For further information on classifying and evaluating IDS, see [19].

e Host-based vs. Network Based: Host-based systems reside on the system that is
being protected, while network-based systems normally reside on a separate machine

dedicated to monitoring the traffic entering and exiting the system.

e Knowledge-based vs. Behaviour Based: Knowledge-based systems are designed
to detect known bad activity, while behaviour-based systems are designed to learn the
patterns of good activity and warn on behaviour it does not recognize. The former
is often vulnerable to unrecognized attacks, while the latter tends to generate large

numbers of false warnings when legitimate but unrecognized behaviour is initiated.

e Continuous vs. periodic: A continuous system runs in real time, analyzing and
making decisions on activities as they happen, while a periodic system collects data,
possibly from log data, and makes a determination after the fact whether an attack

took place.

No one system is sufficient for an autonomic security system, as each system has a complex
set of tradeoffs. Therefore, an autonomic system should have a variety of IDSs at its disposal;
the autonomic system should be able to deploy zero or more of these systems as appropriate
to the security policy and situation. This further implies that there needs to be a standard
way of installing and uninstalling (or at least activating and deactivating) an IDS, and a

standardized way of communication with a management unit.

The Intrusion Detection Message Exchange Format (IDMEF)[20] is a standard being pre-
pared by the Intrusion Detection Exchange Format Working Group of the Internet Engineer-
ing Task Force (IETF). It defines a rich XML-based language for communicating alerts from

26

intrusion detection systems. Central to the goals of the language are the abilities to extend
alerts to contain new information, yet allowing systems that cannot interpret this extended
information to still work with a subset of the information. This technology is one example of
work that could be used to enable communication between IDSs and an autonomic element,

though it still leaves unanswered the question of control in the opposite direction.

5.2 Intrusion Response

An element missing from most IDSs that is required by an autonomic system is that of
intrusion response. IBM states that when dealing with intrusions, “we must assume that it
occurs before we are aware of it” [5]. This point is debatable - several intrusion detection
systems, in the most trivial case a firewall, can block an attack before it succeeds. However,
we can’t hope to block all attacks with these systems, so the system must also have a variety
of responses available for use if it is detected that there has been a security violation after
the fact.

This is, in the most general case, the set of effectors an autonomic manager can use in
response to a detected security problem. A wide variety of responses must be available to

any particular autonomic manager to give it the flexibility to choose the best response.

One very appealing aspect of intrusion detection that could be used for intrusion response
is the concept of biodiversity. Researchers at the University of New Mexico have proposed
systems|[1] capable of adding random variations at compile time to make executable binaries
less vulnerable to attacks depending on the exact layout of code in memory. While useful,
an autonomic computing environment has much more flexibility to make sweeping changes.
One could imagine having multiple pieces of software capable of fulfilling a particular system
requirement; while one may be favoured over others for performance or feature reasons, in
the case where this preferred software becomes a target for intruders, a different software
implementation could be used. At a sufficiently large scale, work could be moved to machines

with entirely different operating systems if the need arose.

Other work in intrusion response has often combined intrusion response with intrusion detec-
tion, allowing for attacks to be blocked as they occur. An example of this is work on system
call delays [18], where anomalous system calls from a process to the operating system are
delayed before being allowed to complete. It was found that the pattern of system calls
become anomalous so quickly during intrusions that the system calls are delayed sufficiently

to prevent the attacker from getting access in any reasonable amount of time.

27

Work in autonomic computing relating to self-healing can also be used for self-protection.
For example, if a program can be retrieved from a secure source, a corrupted or infected
software element could be restarted quickly using recursive restart techniques [9] described
by the Recovery Oriented Computing project. In general, the ability to stop and start

services is a powerful tool that can be used to thwart intruders.

5.3 Security Policy Representation

The security policies at every level of an autonomic system need to be represented in a

common format that can be stored and communicated between autonomic managers.

There is much work going on for domain-specific security policy representations. An example
is the work on the OASIS Extensible Access Control Markup Language (XAMCL) [21] to
represent access control policies in a standard XML-based format. Another example is the
World Wide Web Consortium’s Platform for Privacy Preferences (P3P) [22], which is a
standard for communicating privacy preferences and policies between a provider of private
information and the consumer of such information. While these tools are useful, a generalized
way of representing security concerns, capabilities, and policies needs to be designed in such

a way that the information can be reasoned with to make security decisions.

One such language that has had significant success in recent years is the Ponder[23] policy
specification language. While its initial roots seem to imply a data security centric model,
Ponder has been successfully applied both inside and outside the Policy Research Group
at Imperial College where it was invented, for many forms of policy based management,
from security to data location. The language has shown itself useful as a tool for general
information technology systems management, and as such, could be useful for autonomic

security, or even as a policy language for autonomic computing systems as a whole.

5.4 Operationalization of Security Policies

An administrator of an autonomic system does not communicate security policies in the
form of firewall configurations and access controls, but in the terms of business policy. The
administrator states who can access what resource with which application, and it is up to
the autonomic system to implement this. Furthermore, multiple applications may share the
same physical resources, and the integration of multiple disparate security policies is also
necessary. This is referred to in organizational terminology as the ‘operationalization’ of

goals.

28

Methods need to be developed for security policies to be operationalized between the system
and composite layers, and then the composite and resource element layers. This requires
autonomic managers that understand the implications of a security policy in terms of their

system, and has the effectors to implement it.

Operationalization of security policies could result from policies that are not initially security-
related. For example, a request to redistribute a mail server’s functionality to a new server
will require a change in the firewall configuration of the affected machines to allow the new
traffic. A security policy in this case could even limit the possible set of configurations;
for example, an application that has a security policy that requires its data to be kept on
a private storage device cannot have its storage device shared in an attempt to optimize

resources.

5.5 Autonomic Manager Communication

With multiple autonomic managers communicating in a distributed fashion, a standardized

way needs to be determined for these elements to communicate with each other.

The challenge in this is more the determination of what autonomic managers would actually
want to say to each other. Once that is in place, a standards body can define a standard
for the exact format of these messages. Most vendors have declared their support for web
services standards as this method of communication, though specific services also have their
own communication forms (for example, XACML also includes a method to communicate

authorization requests and responses).

In one example, IBM’s OptimalGrid software makes use of TSpaces, an IBM variant of the
‘tuplespace’ concept for communication between entities in a distributed system. IBM has
also stated that OptimalGrid will support the Open Grid Services Infrastructure as a form
of communication. Many other vendors have stated that their systems may at the lowest

levels communicate using the OGSI specification.

5.6 Security Decision Making

Given a set of data from intrusion detection systems, other autonomic managers, stored
security policy, and a memory of previous events, an autonomic manager must decide on
a particular action to take. This task is essentially the construction of what is called a

“rational agent” in the artificial intelligence field.

29

Rational agents in these contexts are in a dynamic environment, meaning that their envi-
ronment changes in time while it runs. There is also the issue of other autonomic managers
and their components, some of which may be cooperating with you while others may be
compromised and working against you. The environment is often unpredictable and difficult
to model on a large scale due to it’s probabilistic nature. This is a difficult problem from an

Al perspective.

The full set of AI tools may be useful here, from neural networks trained to a specific
environment, to an expert system programmed with the best responses for a particular
device, to genetic algorithms attempting to find the best solution. having derived a model
of the problem. Modelling in particular can often be an important tool to determine how
closely a result could approach an ideal goal. These systems closely resemble a “utility-based

agent” .

The Cooperative Intelligent Real-Time Control Architecture for Dynamic Information As-
surance (CIRCADIA)[21] system demonstrates the ability for a system to make real-time
tradeoffs between objectives in a system. The system can given a model of the system,
possible modes of failure, and a list of weighted objectives, come up with a plan to react
to possible occurrences. The sample problem for this system is described as the desire to
prevent an attacker from successfully creating an account on the system while at the same
time keeping logging output to a minimum (where logging output is required to respond
to the attack). Depending on the relevant weights of the objectives, the system can derive

plans to handle possible situations.

5.7 Self-Knowledge

Autonomic computing, especially self-protection, requires the system to know about its own
operation. This is critical in the formation and operationalization of security policies, as well
as determining what intrusion detection and response methods are available (this further
implies that the system must know it’s own abilities for intrusion detection and intrusion

response as well).

Several of the DASADA projects are performing ongoing research to address this issue in
the context of autonomic systems. The Achitecture Based Languages and Environments[25]
(ABLE) project of Carnegie Mellon University has attempted to implement software capable
of self-repair and self optimization using information derived from architecture specifications
[26]. The Kestrel Institute has followed another path, in using software specifications to

determine how one can interpret sensor information coming from a running system.

30

5.8 Software Instrumentation for Security Management

While support for legacy managed components is important, there is no reason that future
systems should not attempt to actively aid the autonomic manager in detecting and resolving
security issues. This will involve modifying components to make them self-aware and actively
communicate to the autonomic manager its state and potential problems. This has the added
advantage that the managed component may be better aware of states it should be in, and

better equipped to make changes to its state without interfering with its operation.

The simple network management protocol (SNMP) is an example of an old technology for
exactly this purpose, allowing a management tool to view and modify selected attributed
in a hardware device (or software component, though this use is much less common). More
recently, Java Management Extensions (JMX) have added similar functionality to Java ap-
plications, extending on the concept of JavaBeans. Both of these, however, require explicit

support to be added to the component in question.

Tools for “code instrumentation” can be used to automatically add support for security
in existing applications where source code is available. Language developments, such as
AspectJ, could even allow security aspects to be developed separately in a modular and

reusable fashion.

31

6 Proposal for Future Work

Many areas need to be explored in order to successfully create an autonomic security environ-
ment. However, without a basic autonomic computing structure, any attempt to experiment
with autonomic computing security constructs would be at best incomplete. Therefore the
first and most pressing task is to create an environment in which autonomic security struc-

tures can be experimented with.

Once such an environment is in place, the structures described in this report can be tested
in some basic scenarios to determine their effectiveness. It will be required to demonstrate
the working operation of the structures before anything more complex can be built on top
of them.

Finally, experiments on the effectiveness of particular security techniques will be able to be
performed. One of the least explored areas as perceived by the author is that of intrusion
response. This area will need strong attention in autonomic systems, as in contrast to
traditional infrastructures, an administrator cannot be relied upon to handle all intrusions.
The concept of security through diversity is particularly appealing, as it can take advantage

of the underlying abilities of autonomic computing to make the system more secure.

6.1 Preparing an Autonomic Computing Environment

It has been shown that many of the components of an autonomic security system are indi-
vidually available. One of the biggest challenges that remains is the act of integrating these
components. One of the most pressing issues is the construction of the autonomic managers
themselves which will be responsible for making security decisions and taking actions, and

form the core of the autonomic computing infrastructure.

The lack of any complete autonomic computing environments makes it difficult to integrate
components and experimentally measure their effectiveness in an autonomic computing se-
curity structure. Some vendors have promised full autonomic systems as early as October
2003, while others have stated that the entirety of their platform will not have been released
until early 2006. Still others predict that a standardized inter-operable autonomic computing

architecture is still ten years out.

Another issue is that of openness - to perform research on different structures, one needs
the ability to modify and extend these structures; either through direct access to code,

the ability to develop module or plugin style extensions, or in the case of Java, sufficient

32

documentation to make use of classes in an autonomic system. Many of the vendors releasing

such technologies may not be inclined to provide such a level of openness.

It is proposed that efforts be directed towards creating an infrastructure in which autonomic
computing security techniques can be experimented with. Several approaches could be taken
to accomplish this, and time should be dedicated towards evaluating each of these approaches

before any one approach is committed to.

One could take an existing autonomic computing infrastructure and modify it to add auto-
nomic security features. This is problematic simply because there are so few systems that
could possibly be extended for this purpose. IBM’s OptimalGrid package, being based in
Java, may be a target for extension, but admittedly is nowhere near implementing a full
general purpose autonomic computing infrastructure. Columbia University’s Kinesthetics
Extreme package could be experimented with as well to see if it provides a sufficiently com-

plete base for autonomic computing.

Alternatively, one could create one’s own autonomic computing infrastructure. This would
be a giant undertaking, but could be aided by making use of several technologies already
available in the areas of distributed computing, (multi) agent systems, and grid computing.
Many vendors have already declared their support for the Open Grid Services Infrastructure
(OGSI)[10] for exactly this reason. The Globus Toolkit is a working open-source Java-based
implementation of this standard for grid computing, and it could be used to provide a base

on top of which autonomic computing structures could be developed with much less effort.

Finally, one could potentially create a simulator to simulate the actions of an autonomic
computing system. This has a disadvantage in that it could entail a significant portion
of the work required to create a working autonomic system, yet make it very difficult to
integrate components that already exist into the system. It would be difficult to use such a
system for security modelling since one would have to simulate both processes with security
flaws and intrusion detection systems to detect the errors, as well as model intruder activity.
However, the advantage is that autonomic computing systems on a scale much larger than can

reasonably be constructed in a lab can be modelled and their behaviour quickly determined.

6.2 Security Research

Having a base autonomic system will allow security in autonomic computing to be inves-
tigted. The first goal should be to investigate how (or even if) the patterns described in this

report can be applied to the autonomic system chosen. These patterns must be made more

33

specific to map them to the specific design-level components of this system, and may require

revision, or simplifications for experimentation purposes.

Once this structure is in place, it should be simple to experiment with various forms of
security systems. Areas where different systems could be experimented with include the
security decision making and control, intrusion deteciton systems, and intrusion response
systems. If the autonomic system is sufficiently flexible, it may even be possible to experiment

with variations in the self-protection architecture itself.

6.2.1 Security through Diversity

A security advantage that an autonomic computing system has in terms of security is that
the assumptions that are made about the structure and components of such a system grant
us much greater flexibility. It can be assumed that the system has the ability to reconfigure
itself for different situations. It can be assumed that software can be deployed and redeployed
as required. It can be assumed that the system supports a heterogeneous set of components.

All these assumptions grant us flexibility to change the system.

Returning to autonomic computing’s biological analogy, one can refer to this concept as
‘biodiversity’. A paper[l4] examining how diversity in a computing environment can improve
security observed how even small amounts of randomness in the compilation of a binary would
make it much harder to exploit common security exploits. However, this work was limited
to compile and load time changes, with the assumption that the behaviour of the software
had to be identical.

An autonomic system is much less limited, in that it could apply these principles at a much
larger scale, in terms of entire programs, entire servers, or even entire networks. Biodiversity
at much larger scales would serve as an effective generic response to almost any form of
security attack. For example, if an Microsoft IIS web server is hosting a PHP application,
and these web servers start getting compromised, it is quite possible for an Apache web
server to replace the IIS web server temporarily, as each web server could perform equivalent
functions (though, notably, many of the features and internal characteristics may be quite
different), and it has already been assumed that the system can configure the web server

appropriately.

Research should be done to answer several questions:

e Can autonomic elements in general be replaced by ones that perform a similar function

but with differing implementations?

34

e [s diversity an effective response to prevent the spread of a security compromise?

e How well can an autonomic system determine the scope of a compromise and make a

decision as to what to replace?

e Would such a system detect and respond to attacks sufficiently fast to make the ap-

proach worthwhile?

6.3 Timeline

I will be doing a co-op work term with the University of Waterloo between September
and December of 2003. This provides an opportunity to investigate the issues raised in this
report, however puts a rather strict time restriction on what can be developed. The following

schedule of investigations are suggested.

Existing System Investigation (3 weeks): An in-depth look at the technologies that
could potentially act as a base for self-protection research. Several technologies are avail-
able, but the selection of any particular technology depends on the ability to freely use and

experiment with the technology, as well as the extra development effort required to use it.

e Columbia University’s Kinesthetics eXtreme (KX) project, preferably a setup similar

to the demo of their ‘Workflakes’ system demo described in [27].

e The Globus Toolkit 3.0, building an autonomic system on top of grid technologies,
similar to the IBM OptimalGrid project.

e [BM’s OptimalGrid project.

e Autonomic structures on top of mobile agent coordination systems, such as open-source

Cougaar project or the University of Massachusetts Little-JIL project.

e Autonomic structures on top of an active middleware service.

Analysis and Decision (1 week): An approach to implementing a usable research system

will be chosen and documented.

Construction of Autonomic System (4 weeks): Once a system is chosen, a test en-
vironment must be created with autonomic capabilities and the shell of a self-protection

infrastructure.

35

Test Application and Exploits (2 weeks): At least one application must run in this
test environment, and if the autonomic computing system (and time to experiment) permits,
multiple applcations should be deployed. Time should be spent to find some potential

methods of intrusion to use as test cases on the system.

Experimenting with Self-Protection (4 weeks++): The ultimate goal, namely to
experiment with self protection mechanisms themselves. While this work term will only
allow a certain amount of time to experiment with these, the availabilitiy of an autonomic
computing system will allow easy continuation of my work during and after my final un-
dergraduate term. My primary focus will likely change in the next three months, but my
initial target for this area will be the above-described challenge of intrusion response with
diversity, hopefully at the level of software components. However, many things could be
experimented with, and one area that will require attention during this time frame will be
intrusion detection systems in the context of autonomic systems, as at very least one will be

required to trigger the autonomic system to respond.

Documentation and Extra Work (2 weeks): Cleanup and slack for time overruns.

36

References

1]

2]

[10]

[11]

Autonomic Computing: IBM’s Perspective on the State of Information Technology, IBM
Research, Westchester County, N.Y., 2001.

“Fujitsu Siemens Computers’ concept for Autonomic Systems,” Fujitsu Siemens Com-
puters, http://www.fujitsu-siemens.com/atbusiness/1020071.html (current July
2003).

A.G. Ganek and T.A. Corbi, “The dawning of the autonomic computing era,” IBM
Systems Journal, vol. 42, no. 1, 2003

An architectural blueprint for autonomic computing, IBM, Hawthorne, NY, 2003.

D. Chess, C. Palmer and S. White, “Security in an autonomic computing environment,”
IBM Systems Journal, vol. 42, no. 1, 2003.

“Microsoft Announces Dynamic Systems Initiative,” PressPass - Information
for Journalists, http://www.microsoft.com/presspass/press/2003/mar03/
03-18DynamicSystemsPR.asp (current July 2003).

A. Wohl, “Sun’s N1 And A New Kind Of Systems Management,” Amy D. Wohl’s
Opinions, http://www.wohl.com/wa0274 .htm (current July 2003).

“The Berkeley/Stanford Recovery-Oriented Computing (ROC) Project,” http://roc.
cs.berkeley.edu/ (current July 2003).

G. Caneda et al, “Reducing Recovery Time in a Small Recursively Restartable System,”
Int’l Conf. on Dependable Systems and Networks (DSN-2002), 2002.

Open Grid Services Infrastructure (OGSI) Version 1.0, Open Grid Services Infrastruc-
ture Working Group, 2003.

J. Kaufman et. al., “OptimalGrid — autonomic computing on the Grid”, IBM develop-
erWorks article, San Jose, CA, 2003.

“Computer Immune Systems,”, UNM Computer Science, http://www.cs.unm.edu/

“immsec/ (current August 2003).

S. Hofmeyr and S. Forrest. “Architecture for an Artificial Immune System,” Evolution-

ary Computation 7, Morgan-Kaufmann, San Francisco, CA, 2000.

37

http://www.fujitsu-siemens.com/atbusiness/1020071.html
http://www.microsoft.com/presspass/press/2003/mar03/03-18DynamicSystemsPR.asp
http://www.microsoft.com/presspass/press/2003/mar03/03-18DynamicSystemsPR.asp
http://www.wohl.com/wa0274.htm
http://roc.cs.berkeley.edu/
http://roc.cs.berkeley.edu/
http://www.cs.unm.edu/~immsec/
http://www.cs.unm.edu/~immsec/

[14]

[15]

[16]

[17]

[18]

[19]

[20]

23]

[24]

[25]

S. Forrest, A. Somayaji and D Ackley, “Building Diverse Computer Systems,” Proc. 6"
Workshop on Hot Topic in Operating Systems, Computer Society Press, Los Alamitos,
CA, 1997.

Y. Huang and A. Sood, “Self-Cleansing Systems for Intrusion Containment,” Workshop
on Self-Healing, Adaptive and self-MANaged Systems (SHAMAN), New York City, NY,
2002.

M. Shaw, ““Self-Healing”: Softening Precision to Avoid Brittleness,” Workshop on Self-
Healing Systems (W0SS°02), Charleston, SC, 2002.

S. Chari, and P. Cheng, “BlueBoX: A Policy-driven, Host-Based Intrusion Detection
system,” Internet Society’s 2002 Network and Distributed System Security Symposium
(NDSS’02), San Diego, CA, 2002.

A. Somayaji and S. Forrest, “Automated Response Using System-Call Delays,”, Proc.
9" USENIX Security Symposium, Denver, CO, 2000.

D. Alessandri et al, Towards a Taxonomy of Intrusion Detection Systems and Attacks,

Research Report RZ 3366, IBM Research, Zurich, Switzerland, 2001.

Internet Draft January 30 2003, Intrusion Detection Message Exchange Format Data
Model and Extensible Markup Language (XML) Document Type Definition, Intrusion
Detection Working Group, Internet Engineering Task Force, 2003.

eXtensible Access Control Markup Language (XACML) Version 1.0, OASIS, 2003.

L. Cranor et al, “The Platform for Privacy Preferences 1.0 (P3P1.0) Specification”,
World Wide Web Consortium, http://www.w3.org/TR/2002/REC-P3P-20020416/
(current July 2003).

N. Damianou et al., “The Ponder Policy Specification Language,” Proc. Policy 2001:
Workshop on Policies for Distributed Systems and Networks, Bristol, UK, 2001.

V. Ha and D. Musliner, “Balancing Safety Against Performance: Tradeoffs in In-
ternet Security,” 36" Annual Hawaii International Conference on System Sciences

(HICSS’03), Big Island, HI, 2003

“ABLE Project Home Page”, Architecutre Based Languages and Environments, http:
//www-2.cs.cmu.edu/ able/ (current August 2003).

38

http://www.w3.org/TR/2002/REC-P3P-20020416/
http://www-2.cs.cmu.edu/~able/
http://www-2.cs.cmu.edu/~able/

[26] D. Garlan, S. Cheng and B. Schmerl, “Increasing System Dependability through
Architecture-based Self-repair,”, Architecting Dependable Systems, Springer-Verlag,
2003.

[27] G. Valetto and G. Kaiser, “Using Process Technology to Control and Coordinate Soft-
ware Adaption,” Proc. Int’l Conf. on Software Engineering, Portland, OR, 2003.

39

	Introduction to Autonomic Computing
	Key Corporate Players
	Academic Work in Autonomic Computing
	Research Groups and Conferences
	Security in an Autonomic Computing Environment

	Autonomic Security Attributes
	Security Aspects of Autonomic Systems
	Self-Protection and Self-Healing

	Structure of an Autonomic System
	Autonomic Elements
	Layers of an Autonomic System

	Security Design in an Autonomic System
	System Layer
	Composite Layer
	Resource layer

	Challenges in an Autonomic Security System
	Intrusion Detection
	Intrusion Response
	Security Policy Representation
	Operationalization of Security Policies
	Autonomic Manager Communication
	Security Decision Making
	Self-Knowledge
	Software Instrumentation for Security Management

	Proposal for Future Work
	Preparing an Autonomic Computing Environment
	Security Research
	Timeline

	References

