
ECE750-6: Pervasive Computing

Research Survey

Survey of Trusted Computing

Technologies and Challenges

Michael Jarrett (99318764)

August 10, 2004



1 Introduction

Consumer computing devices from a security standpoint, can generally be classified as an ‘open’
system or a ‘closed’ system.

Closed computing devices are designed to only run specific software. Normally, the software is
fixed, or if programmable, must be authenticated to be from a known source. Examples of such
devices are mobile phones and modern video game consoles. Security becomes much simpler on
such devices, since software can run knowing that the platform will behave as expected, and the
platform is assured that the software will not attempt to circumvent system security. With the
addition of protected cryptographic keys, users on the network can be assured that authenticated
devices will operate in the way they expect.

Open computing devices, by design, lack any limitations on what runs on them. These systems
often allow for mixing and matching of different vendors’ software at a variety of levels, and almost
infinite flexibility to modify any of these layers. The prime example of such devices are personal
computers. However, this creates a difficulty from a security standpoint, since any one piece of
software cannot trust any other piece of software, either on the local machine or over a network, to
behave as expected. In fact, software in such systems must deal with security under the assumption
that all other software is and even hardware may be maliciously acting against it.

It would be convenient to those using open devices and presenting services on networks with such
devices if one could have the flexibility of an open computing platform, and the security and trust of
a closed computing platform. Recent research has worked towards a solution, referred to as trusted
computing1 (TC). TC systems, through the use of cryptographic hardware and secured software,
can enable a variety of security applications.

In this survey, we will discuss several of the issues and challenges in TC. Section 2 presents the
four key capabilities that trusted computing initiatives wish to provide. Section 3 will discuss the
moral and political aspects of TC. Section 4 will describe several real-world applications for TC.
Section 5 will mention some of the efforts in industry and research to create TC systems. Finally,
section 6 will mention other interesting problems and challenges TC faces.

1A variety of other names are often used, including trustworthy computing, and even treacherous computing. We
will use the abbreviation TC, and leave the choice to the reader.

1



2 Foundations

TC covers a concept more than a particular technology. However, it is generally recognized that
four[1] technologies will be required.

Secure I/O requires the path between user input/output devices and a running program to be pro-
tected from eavesdropping and tampering, normally through the use of encryption. This prevents
attackers from compromising security though the user by manipulating what the user perceives or
enacts.

Process isolation is a stronger form of memory protection, ensuring that one program does not write
to the memory space of another except through controlled means of input. This is stronger than
the protections currently provided by virtual memory architectures, as it even protects the process
from the vast majority of the operating system, in case the OS or its components misbehave. This
is often referred to as memory curtaining, in reference to a particular technique for implementing
process isolation.

Sealed storage allows programs to store data in such a way that only the same program (in the
same state) can recover it. This allows data to be protected on an insecure storage medium like a
hard disk, while preventing its access from other programs, or even a modified version of the same
program.

Attestation, perhaps the most powerful and controversial part of TC, allows for the hardware to
sign a certificate with evidence of the state of the software at each layer between the hardware and
a requesting program. This certificate can be used to prove to remote systems that the software is
unmodified and running on a secure platform.

Most TC designs rely on a secure hardware module, with functionality similar to a smartcard. A
private key is held exclusively within the hardware module, a public key exported from it, and this
module can do cryptographic operations internally. Chipset and processor features are normally
required to provide secure I/O and process isolation. Significant software enhancements are required
to create an environment that uses TC, but many proposals do not require that existing applications
be redesigned to execute in a TC environment.

A great deal of work on TC derives on early work on secure bootstrap, a technology that authenti-
cates every step of platform startup, denying execution to programs not authorized to run. However,
such a system can not be possibly be classified as ‘open’, so is not interesting for TC. However,
authenticated bootstrap, where each component in the boot process is verified to determine access
to additional secrets, is a relevant topic implicit in trusted computing techniques.

2



Another technology often mentioned alongside that of trusted computing is that of smartcards.
Smartcards, while technically similar to the hardware support in TC, are designed to identify a
user rather than a particular machine.

Yet another predecesor to TC is that of the secure coprocessor. These devices execute authenticated
code directly on-chip, and provides tamper-resistance to ensure the operation of this code. These
tend to be fairly weak computationally, providing few of the benefits of open platforms. TC allows
one to create a virtual secure coprocessor, which gives similar security properties as their physical
counterparts.

3 Trusted Computing Implications

A hindrance to the current efforts to advance knowledge in TC, rather than a technical challenge,
is that of TC’s opponents. There has been several very vocal and well-publicized objections to TC
based on the fact that it can be used in several ways unfavourable to consumers. Those supporting
it argue that these issues can be avoided, while still providing the advanced security features of a
trusted platform.

3.1 Detractors

The largest objections to TC come from the potential uses of the technology. Digital Rights
Management (DRM) is now tightly associated with the concept of trusted computing, which scares
many who oppose DRM efforts. It is also possible for software vendors to use such systems to
prevent interaction with competitors’ software, which in an already heavily Microsoft-dominated
world, is considered a serious risk.

Not surprisingly, Richard Stallman, the vocal leader of the Free Software Foundation, has raised
significant objections[2] to the idea of trusted computing, referring to it instead as treacherous
computing. Stallman argues that the primary uses of treacherous computing would be to limit the
sharing of information, blocking alternative software, censorship, and generally removing freedoms
granted users of an open platform. He argues that while such issues already exist today, TC would
force it on consumers, and combined with powerful laws in the United States for the protection of
copyright, could mean the end of the freedoms of open platforms.

Taken much more seriously2 is a world-famous security researcher from the University of Cambridge:
2While Richard Stallman’s many accomplishments both technically and politically are legendary, his tendency for

obsessive ranting and stubborn idealism means many don’t take his opinions seriously.

3



Ross Anderson. In a 2002 article[3], he describes several of the uses of trusted computing, and which
industries gain value from such systems. Key issues raised were the ability of trusted computing to
raise the cost of switching between competing products, the ability (both good and bad) to restrict
and control content, and for illegal competition. An actively-maintained FAQ[4] addresses many
of these issues and more, and argues that trusted computing will not solve many of the issues it is
supposed to solve.

Several websites[5][6] have formed to oppose industry efforts based on the Trusted Computing
Platform Alliance (TCPA). These sites have seen little activity since the TCPA was re-organized
into the Trusted Computing Group.

3.2 Responses to Detractors

IBM researcher David Safford responds[7] to several criticisms against the Trusted Computing Plat-
form Alliance efforts to design a standard hardware architecture for trusted computing. Essentially,
he differentiates between the base technologies and bad ways it can be used, stating that people,
“improperly lump together TCPA, Palladium, and DRM.” Using several early IBM systems as
an example, he attempts to counter arguments that such systems couldn’t be disabled, or would
lock out alternative operating systems. He also points out the fact that current industry designs
are not effective at preventing hardware attacks by the owner to attempt to prove that limiting a
user’s control is not the primary objective. But most importantly, he argues against the idea that
a technology should be shunned simply because it can be used as a means to negative ends.

An article[8] from Rob Enderle, who sits on the Advisory Committee of the Trusted Computing
Group (TCG), insists that the technology will solve very real security problems, and that the diverse
group of corporations in the TCG will prevent any single interest from taking unfair advantage from
the standard. For example, it’s unlikely that Microsoft could guide the technology towards blocking
alternative operating systems while IBM and Sun are members.

4 Uses of Trusted Computing

TC will never gain popular support without useful applications. Outlined below are a few of the
popular uses envisioned for TC systems.

4



4.1 Digital Rights Management

The primary use of trustworthy computing is digital rights management (DRM), a technology
pushed heavily by the content industry to allow for content to be decrypted and used only in
accordance with restrictions specified by the content generator. This technology can be used for a
wide variety of uses, from preventing the copying of a downloaded music file, to enforcing forwarding
or copying restrictions on emails, and preventing leaks of confidential data.

Trusted computing can aid DRM by securely storing decryption keys for data, and ensuring that
only trusted programs are given these keys. Sealed storage is used to store the media, and such
media is only provided to applications which can provide an attestation to being unmodified and
approved for download of DRM-protected media. Secure I/O and process isolation ensure that
other parts of the system cannot access the data while being used by the program.

4.2 Internet Peer-to-Peer Computing

Since the advent of distributed computing on the Internet, there has been motivation to cheat
the system. In peer-to-peer file sharing networks, a method has already been patented[9] to pre-
vent sharing by offering fake downloads for popular songs, and other methods include purposely
downloading legitimate files slowly to prevent others from taking the place of the downloader. In
distributed computations, such as the popular SETI@home project, there has already been several
accusations of ‘cheating’, and significant workloads are duplicated to ensure that no one cheater
can return incorrect results.

Trusted computing can prevent cheating by ensuring only approved clients participate in the net-
work, and prevent data being used in nodes from being manipulated or accessed by other programs.
This could even be used to protect P2P piracy networks from attack; one paper[10] describes using
remote attestation and process isolation to prevent several forms of attack against P2P networks,
ironically supporting the problem advocates of DRM hope TC will solve.

4.3 Software Tamper Resistance

A key security threat to software is the fact that it is trivial for it to be modified for malicious
purposes. A common solution already used for many types of software is to digitally sign an
application with the development team’s signature key. However, this solution can be circumvented
simply by modifying the set of accepted signatures, or even by modifying the underlying operating
system. This is very common in rootkits, a form of exploit which modifies a running operating

5



system to provide backdoors while hiding its own presence from other programs in the system.

TC offers many potential solutions to such problems, including using hardware-protected keys
to verify software. Even if the software is allowed to execute, applications run in a corrupted
environment would not be able to get access to secure storage or succeed in obtaining resources
using remote attestion. This would severely limit the damage such software could cause.

The Enforcer[11] project implements file protection on a Linux system. A Linux Security Module
monitors all file accesses, and should any of those files have changed from a recorded hash, several
actions can be taken, including logging, denying access, or locking cryptographic resources. The
module provides an encrypted filesystem, protected by keys on a Trusted Platform Module (see
section 5.1). Should any software between the BIOS and the Enforcer module be modified, the
Enforcer module will be unable to unlock the filesystem.

4.4 Other Applications

A paper[12] outlines several applications of a virtual-machine based trusted computing environment.
One suggestion is a distributed firewall; instead of forcing a centrally-deployed firewall, each device
implements a firewall locally. A trusted module is used as a gateway to an IPSec-protected network,
and can only connect using keys negotiated with remote attestation. While arbitrary software can
still run on the system, no communication with the IPSec network can be performed without the
firewall module running in an unmodified state.

The same system could be used to prevent spam. A common approach proposed in research to
counter email spam is to force senders to solve a computational puzzle before email is accepted,
however this suffers from a wide diversity in computational power of devices that wish to send email.
A trusted module able to relay email could assure that email has been appropriately rate-limited,
and that headers have not been forged.

A technical report[13] from the Enforcer/Bear project describes a method for using currently-
available trusted computing hardware modules to create a trusted webserver. A security admin-
istrator signs particular system configurations, enforced by the trusted Enforcer program. Should
the signed conditions be violated, or any tampering be detected in the enforcement part of the
system, the webserver is denied access to it’s content, and more importantly, its SSL private key.

6



5 Trusted Computing Technologies and Approaches

5.1 Trusted Computing Group

Undoubtedly a leader in the area of TC is the Trusted Computing Group (TCG). This group
formed in 2003, as a reorganization of the disbanded Trusted Computing Platform Alliance (TCPA),
retaining the design work that group had done to date. It is an industry alliance with the goals of
designing a standard hardware module and software interface layer to support trusted computing
applications. [14]

TCG has created two key specifications, covering hardware and low-level software respectively. The
Trusted Platform Module (TPM) specification describes the interfaces and minimum functionality
of a hardware module used for trusted computing, while the TCG Software Stack defines the
behaviour and interfaces of low-level interface software between the TPM and operating systems.

The TPM is fundamentally a cryptographic processor with an embedded asymmetric keypair. The
private key, called the endorsement key never leaves the processor, and is normally generated at
the time of manufacture. This is used to generate identity keys, which are used for communication
with the world. Identity keys are signed by an external certificate authority and protected by the
endorsement key to ensure that the certificate actually belongs to a TPM.

Identity keys, which are certified by a certificate authority to be from a TPM, can then be used to
attest to the state of software in the system. The private keys are held in the TPM, and are used
to sign off on a state of platform configuration registers (PCR), which store hashes of the current
system state. This is used for remote attestation by a program wishing to prove it is in a known
state.

The TPM also provides for secure storage. An application may request a particular resource be
encrypted using a key and the current value of a subset of the PCRs. Should the application wish
to decrypt the data, the PCRs must be in the same state, which will not be true if any software
changes.

The TPM 1.2 specification has been widely accepted as a standard for a hardware base for remote
attestation and sealed storage. Many other initiatives assume such a module is in place. However,
on its own, the TPM does not provide for process isolation or secure I/O, the other key requirements
of TC

7



5.2 LaGrande

Intel Corporation is in the process of implementing LaGrande[15] technology into its chipsets.
LaGrande follows up on the work of the TCG, incorporating a TPM module into its platform.
It adds secure input from USB keyboards and mice, and protects the screen buffer of graphics
adapters. Technology in Intel’s processors will provide memory protection adequate for process
isolation, as well as placing controls on the direct memory access controller through the chipset to
ensure that no software (or even a hardware device) can use it to circumvent processor protections.

This technology builds upon the existing specification of the TPM 1.2 to provide hardware sufficient
for the implementation of trusted computing.

5.3 Next Generation Secure Computing Base

The Next Generation Secure Computing Base[16] (NGSCB) is Microsoft’s push to provide TC
features as part of the upcoming Longhorn operating system. Formerly called Palladium, the
initiative was renamed after receiving negative publicity.

NGSCB consists of a secure ‘nexus’, which runs parallel to the running operating system. This is a
minimal operating system, providing memory management and access to cryptographic resources.
On top of this run nexus compute agents (NCA), which serve as the core protected application of
a trusted application. These NCAs are protected from each other and from the platform.

NGSCB also mandates a security support component (SSC), which provides hardware support
for the nexus. They state that the TPM 1.2 specification is suitable for an SSC component, but
would require additional chipset support for secure I/O and protected memory. Intel’s LaGrande
technology conveniently adds exactly this to TPM 1.2.

5.4 Other Approaches

A Microsoft paper[17] describes a layered system where each layer’s software is only ever executed
by layers below it. The lower layer can record the state of each process in the upper layer when
it begins execution, and later use this information to determine whether or not to grant access to
cryptographic resources. They describe APIs using this system to easily implement secure storage
and attestation. They require a basic hardware secret plus effective memory isolation, though they
state, unlike most industry researchers, that virtual memory protection can be sufficient for process
isolation.

8



Dartmouth College’s Enforcer/Bear[13] demonstrated practical secure storage and remote attesta-
tion in the context of an Apache webserver under Linux. Using a trusted bootloader and TCPA
hardware, it was possible for the system to perform remote attestation simply through the use of an
SSL certificate. The trusted kernel would deny access to Apache’s web resources and SSL private
key if the trusted root had been tampered with in any way, or if the Apache configuration changed
in a way inconsistent with a configuration authorized by a trusted security agent.

Stanford has developed[12] a system based on a trusted virtual machine monitor (T-VMM). To
provide strong isolation and monitoring guarantees, an unmodified OS is run on a virtual machine,
while each trusted service is run on an isolated virtual machine. Minimal hardware authenticates
the T-VMM, while the T-VMM can authenticate each trusted process. The use of virtual machines
allows the trusted virtual machines to create devices for the untrusted virtual machine, allowing
the bulk of an application to continue to run in an unprotected environment.

6 Challenges

6.1 Platform Keys

Practically all trusted computing solutions assume a keypair is permanently stored in hardware,
and this key (indirectly) allows others to establish trust in the platform. However, since such keys
are unique, to verify the authenticity of such a key, either the public component of such a key must
be signed by the manufacturer before being stored in hardware, or the manufacturer must store
the key to later authorize.

Both cases have serious shortcomings. There is no guarantee to users of the chip (since they don’t
generate the key) that the private portion of the key has not been retained by the manufacturer.
Furthermore, it introduces privacy issues by allowing a machine to be uniquely identified, though
these can be partially alleviated by the use of trusted third parties. Finally, remote attestation
using such a key will require access to a public key infrastructure, which is by no means a solved
problem.

6.2 Security of Trusted Applications

Despite assertions of TC supporters, most TC technologies currently do not protect software from
security holes. While other applications may not be able to access secure storage, the application
authorized to access the storage can still be compromised using conventional attacks such as buffer

9



overflows or scripting.

Additional work is needed to block an application that has been compromised from accessing
the trusted environment. This will likely never provide perfect protection, but could incorporate
technologies such as intrusion detection, and enhanced hardware protections from buffer overflows.

6.3 Configuration and Upgrade

If an application changes state, it should be denied access to sealed storage. However, there is often
a legitimate need to upgrade or reconfigure software, which would instantly bar it from accessing
protected content. The data would have to be unlocked prior to the upgrade, imported, and relocked
once data import was complete.

Many systems avoid this by placing only minimal functionality within the trusted portion, however
this means the untrusted portions does not benefit from verification. Ideal would be the ability for
someone (preferably the owner or a party trusted by the owner) to sign upgrades, but techniques
need to be developed to do so securely.

6.4 Backup and Recovery

Backup is made more difficult in trusted computing, since only an identical configuration can read
sealed data. Each application must be equipped to export data for unprotected backup, which
would circumvent many of the DRM uses of the system. Even worse, data is protected by a set of
keys in a fragile electronic device, designed specifically to prevent those keys from being extracted.
A failure of that device would mean the instant loss of all protected data.

Methods need to be explored to backup private keys protected in hardware in a manner that does
not circumvent the security of the system. Software will need to be able to use those keys to recover
data, or the hardware capable of importing private keys.

References

[1] “Trusted Computing,” Wikipedia: The Free Encyclopedia; http://en.wikipedia.org/wiki/
Trusted_computing.

[2] R. Stallman, “Can you trust your computer?,” Newsforge, 2002; http://www.newsforge.com/
print.pl?sid=02/10/21/1449250.

10

http://en.wikipedia.org/wiki/Trusted_computing
http://en.wikipedia.org/wiki/Trusted_computing
http://www.newsforge.com/print.pl?sid=02/10/21/1449250
http://www.newsforge.com/print.pl?sid=02/10/21/1449250


[3] R. Anderson, “Cryptography and Competition Policy - Issues with ‘Trusted Computing’,” proc.
2nd Annual Workshop on Economics and Information Security (WEIS03), College Park, MD,
2003.

[4] R. Anderson, “‘Trusted Computing’ Frequently Asked Questions,” Ross Anderson’s Home
Page, Aug. 2003; http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html.

[5] “Anti-TCPA”; http://antitcpa.alsherok.net/phpnuke/html/.

[6] “No TCPA!”; http://www.notcpa.org/.

[7] D. Safford, “Clarifying Misinformation on TCPA,” report, IBM Research, Oct. 2002.

[8] R. Enderle, “Trusted Computing: “Maligned by Misrepresentations and Creative Fabrica-
tions”,” Security Pipeline, Feb. 5, 2004; http://www.securitypipeline.com/showArticle.
jhtml?articleID=17602019.

[9] J.C. Hale, G.W. Manes, Method to inhibit the identification and retrieval of proprietary media
via automated search engines utilized in association with computer compatible communications
network, US Patent 6,732,180, to University of Tulsa, Patent and Trademark Office, 2004.

[10] S.E. Schechter, R.A. Greenstadt, and M.D. Smith, “Trusted Computing, Peer-To-Peer Dis-
tribution, and the Economics of Pirated Entertainment,” 2nd Workshop on Economics and
Information Security, College Park, MD, May 29, 2003.

[11] O. Wild, “Enforcer Homepage,” Apr. 9, 2004; http://enforcer.sourceforge.net/.

[12] T. Garfinkel, M. Rosenblum, D. Boneh, “Flexible OS Support and Applications for Trusted
Computing,” 9th Hot Topics in Operating Systems, 2003.

[13] J. Marchesini, S.W. Smith, O. Wild, R. MacDonald, “Experimenting with TCPA/TCG Hard-
ware, Or: How I Learned to Stop Worrying and Love The Bear,” tech. report TR2003-476,
Department of Computer Science, Dartmouth College, December 2003.

[14] “Trusted Computing Group: Home,” 2004; http://www.trustedcomputinggroup.org/

[15] N. Stam, “Inside Intel’s Secretive ‘LaGrande’ Project,” LaGrande Overview and Technical
Insights, ExtremeTech, Sept. 19, 2003; http://www.extremetech.com/article2/0,1558,

1274119,00.asp.

[16] “Security Model for the Next-Generation Secure Computing Base,” Windows Platform Design
Notes white paper, Microsoft Corporation, 2003.

[17] P. England and M. Peinado, “Authenticated Operation of Open Computing Devices,” proc.
7th Australasian Conference on Information Security and Privacy, pp. 346-361, 2002.

11

http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html
http://antitcpa.alsherok.net/phpnuke/html/
http://www.notcpa.org/
http://www.securitypipeline.com/showArticle.jhtml?articleID=17602019
http://www.securitypipeline.com/showArticle.jhtml?articleID=17602019
http://enforcer.sourceforge.net/
http://www.trustedcomputinggroup.org/
http://www.extremetech.com/article2/0,1558,1274119,00.asp
http://www.extremetech.com/article2/0,1558,1274119,00.asp

	Introduction
	Foundations
	Trusted Computing Implications
	Detractors
	Responses to Detractors

	Uses of Trusted Computing
	Digital Rights Management
	Internet Peer-to-Peer Computing
	Software Tamper Resistance
	Other Applications

	Trusted Computing Technologies and Approaches
	Trusted Computing Group
	LaGrande
	Next Generation Secure Computing Base
	Other Approaches

	Challenges
	Platform Keys
	Security of Trusted Applications
	Configuration and Upgrade
	Backup and Recovery


